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Abstract

I develop tools to detect irregular assignments of cases to judges and apply them to

Ecuador’s judicial system. I derive the sharp bounds on the overall, court-specific, and

judge-specific probabilities that a case’s assignment is inconsistent with existing regula-

tions. The bounds rely on administrative case assignment data and one, or both, of the

following assumptions: (i) that certain observed case characteristics do not influence

which judge a case should be assigned to, and (ii) that the probability distribution over

the judges that each case should be assigned to is known (e.g. uniform, random assign-

ment). I construct a database of all publicly-available case assignments in Ecuador’s

district courts, with over two million assignments from 2016 to 2020 and I find that 5%

of courts and judges account for 43% and 37% of irregular assignments, respectively.

Overall, at least 65 thousand assignments, 2.9%, are irregular.
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Regulations that govern the assignment of judicial cases to judges are ubiquitous

and can be traced back to the 4th century BCE in Athens.1 They aim to abolish

the market for judges, where judicial decisions tend to favor the party with a higher

willingness to pay for a favorable decision, the party that files the case and, hence, has

a first-mover advantage, or the party that knows more about the set of available judges

(Egan, Matvos, and Seru 2021). Indeed, there is widespread advocacy for clear rules to

govern case assignments (Transparency International 2007). In practice, however, their

successful implementation requires enforcement resources. When enforcement is low, a

non-trivial amount of actual assignments could be irregular, or inconsistent with the

regulations.

From an enforcement policy perspective, this raises the following questions. How

many case assignments are irregular? To what extent are irregular assignments made

in particular courts or to specific judges? In this paper, I develop tools to address

these questions in any given judiciary. Then, I apply them in Ecuador, where multiple

irregular assignment scandals have surfaced in 2021, one of which involves the recently

deposed mayor of Quito, Ecuador’s capital city. I construct a database that contains

over 2 million case assignments made in district courts between March 2016 and Febru-

ary 2020, and I detect irregular assignments that are highly localized. 5% of courts

and judges account for 43% and 37% of irregular assignments, respectively. Overall, at

least 65 thousand assignments, 2.9%, are irregular.

At the heart of these measurements lie the case assignment regulations. They imply

that various judicial case characteristics do not influence which judge the case should

be assigned to. Examples include the plaintiff’s friendly ties with government officials,

the amount of money claimed in a payment dispute, or the amount of paperwork that

the plaintiff or prosecutor submits when she files the case. If they are sufficiently

specific, then they also imply a probability distribution over the judges that each case

should be assigned to (e.g. uniform, random assignment). Each implication yields an

identification assumption that is informative for the probability that a case’s assignment

1 During that century, Athenian jurors were randomly selected to participate in a given trial using a

random, multi-stage selection process that involved an allotment machine called a kleroterion. See Dow

(1937) p.198.
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is irregular, given data on actual assignments. However, the second implication yields a

more informative assumption that allows me to measure another parameter of interest:

the probability that a case’s assignment is irregular, conditional on a given judge.

These parameters give a granular view on the structure of irregular assignments and

are valuable inputs to guide the allocation of regulatory enforcement resources.

I begin by relating the judge that a case is assigned to with the judge that the

case would have been assigned to, had its assignment been irregular, and the judge

that the case would have been assigned to, had its assignment been regulatory, or in

accordance with existing regulations. The counterfactual assignment that is observed

will depend on whether the case’s assignment is irregular or not. Unlike program

evaluation models, where the treatment status is observed, we do not observe any case’s

irregular assignment status. Indeed, the distribution of the case’s irregular assignment

status is the object of interest. Thus, our model involves a discrete, two-component

mixture.

I then study identification under two assumptions. First, the researcher observes

a case characteristic that is statistically independent of counterfactual regulatory as-

signments only. I call such an instrumental variable a one-sided instrument. One-sided

instruments are weaker than traditional instrumental variables (e.g. Imbens and Angrist

1994), which require exclusion from both counterfactual outcomes, and their identifi-

cation power has not been studied in the context of mixture models. They differ from

the instrumental variables studied by Henry, Kitamura, and Salanié (2014), which are

excluded from observed outcomes, conditional on the unobserved state — the case’s ir-

regular assignment status.2 The second assumption involves a stronger interpretation of

the regulations: the probability mass function of counterfactual regulatory assignments

is known.

Under each assumption, I obtain analytical solutions for the sharp bounds on the

probability that a case’s assignment is irregular, as well as the corresponding prob-

2They also differ from the mismeasured counterparts used in the literature on data misclassification, which

satisfy the same exclusion restriction as the instrumental variables of Henry, Kitamura, and Salanié (2014)

(see Bollinger 1996, Mahajan 2006, Y. Hu 2008 and DiTraglia and Garćıa-Jimeno 2019).
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abilities conditional on covariates (e.g. the case’s court and time of assignment) and

conditional on the judge that the case is assigned to. This is a two-step process. First, I

show that the parameters of interest are examples of linear and scalar parameters whose

identified sets are obtained by solving two linear programming problems. Related char-

acterizations include Balke and Pearl (1997), Torgovitsky (2019), Tebaldi, Torgovitsky,

and Yang (2019) and Lafférs (2019b). Then, I reformulate the linear programs that

define the lower bounds for our parameters of interest in terms of optimal transport

problems with convenient graphical interpretations and obtain their closed-form solu-

tions.

The closed-form solutions for the bounds are simple. If the distribution of coun-

terfactual regulatory assignments is known, the lower bound on the probability of an

irregular assignment equals the absolute (`1, taxicab, Manhattan) distance between

this distribution and that of actual assignments. With a binary one-sided instrument,

this lower bound equals the absolute distance between the two conditional distributions

of actual assignments, weighted by the mass of the smaller group, defined in terms of

the instrument values. Moreover, knowledge of the distribution of counterfactual reg-

ulatory assignments implies that the probability that a case’s assignment is irregular,

conditional on a given judge, is greater than the rate of cases that the judge received

in excess of what she should have received.

I then apply these findings in Ecuador, a country with a GDP per capita that is

roughly ten times smaller than that of the U.S. (2019, World Bank), where multiple

scandals involving manipulated assignments of cases to judges have surfaced in recent

months. According to Ecuadorian regulations, the set of judges that a case can be

assigned to depends on the case’s location and field of law (i.e. whether the case

pertains to criminal law, family law, administrative law, etc. . . ). Within a court, judges

are selected on the basis of a lottery system that is not fully specified.

My primary data source is the public, plain text version of the government’s database

of judicial cases, available on a government website that facilitates individual case

searches. I collected and structured the case assignment information for all cases that

are contained in this website, to assemble a database with over two million case as-
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signments, performed between March 2016 and February 2020 in Ecuador’s 331 district

courts.

The one-sided instrument that I consider is the amount of paperwork that the

plaintiff or prosecutor submits when she files the case. Its exogeneity stems from the

fact that cases with large or small amounts of plaintiff or prosecutor paperwork should

not be assigned to judges differently. This instrument alone reveals that at least 9, 347

case assignments, 0.8%, are irregular. In particular, one court accounts for over a third

of these assignments.

A more specific interpretation of the regulations is that cases should be assigned

to each of the competent judges in any given court with equal probabilities. I assume

that a judge is competent for a given case if she is in an active spell when the case is

assigned, and if she has a small enough case workload, compared with her peers. A

scalar parameter governs each criterion and I select the parameters so as to obtain a

conservative lower bound on the probability that a case’s assignment is irregular. This

exercise implies that 5% of courts and judges account for 43% and 37% of irregular as-

signments, respectively, and that at least 65 thousand assignments, 2.9%, are irregular.

Moreover, 111 judges out of 1568 received cases with irregular assignments.

The primary contribution of this paper is to develop tools to quantify the extent

of irregular assignments of cases to judges on the basis of existing regulations and

observed assignments. My setting is close to that of Daljord, Pouliot, Xiao, and M. Hu

(2021), who measure the extent of black market trade of Beijing license plates under a

local government rationing policy. When the distribution of counterfactual regulatory

assignments is known, the lower bound on the probability that a case’s assignment is

irregular equals their optimal transport estimator of the lower bound on the probability

that a license plate is traded in the black market. I build on their analysis by introducing

one-sided instruments as a means to estimate the same parameter without imposing

knowledge of the distribution of a counterfactual outcome. Second, I show that their

optimal transport estimator equals the sharp lower bound on the parameter of interest

when knowledge of the distribution of one counterfactual outcome is imposed.

My application to Ecuador’s judiciary showcases the practical value of these tools to
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quantify behavior that is typically hard to measure. Indeed, early studies of government

corruption (Reinikka and Svensson 2004, Fisman and Wei 2004, Olken 2006) rely on

access to the joint distribution of actual outcomes and a potentially noisy measure of

the outcomes that would have been observed, had there been no corruption.

From an econometric point of view, this paper introduces one-sided instruments

to study non-parametric identification of mixture models (e.g. Hall and Zhou (2003),

Henry, Kitamura, and Salanié (2014), Compiani and Kitamura (2016), Kitamura and

Laage (2018)). My linear programming formulation of the identified set for the pa-

rameters of interest can be seen as an application of Lafférs (2019b), is inspired by

Tebaldi, Torgovitsky, and Yang (2019), and is related with Balke and Pearl (1997),

Lafférs (2013), Demuynck (2015), Lafférs (2019a) and Torgovitsky (2019). In my set-

ting, I do not observe a proxy variable for the cases’ irregular assignment statuses, a

common feature in the data misclassification literature (e.g. Bollinger 1996, Mahajan

2006, Molinari 2008, Y. Hu 2008 and DiTraglia and Garćıa-Jimeno 2019), I do not have

access to the irregular assignment status for a subset of cases, as in Molinari (2010),

nor can I credibly set an upper bound on the probability that a case’s assignment is

irregular, as in Horowitz and Manski (1995).

I organize the paper as follows. Section 1 introduces the econometric framework in

a stylized environment and presents the identification results. Section 2 develops the

theory of identification that underlies the results presented in Section 1. Section 3 dis-

cusses the Ecuadorian context and the available data. Section 4 adapts the econometric

framework to the Ecuadorian context and discusses estimation. Section 5 presents the

estimation results and section 6 concludes.
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1 Illustrative Framework

This section illustrates my identification results in a stylized econometric framework.

The framework forms the basis for the empirical model that I use to measure irregular

assignments in Ecuador.

1.1 Setting

Consider a stylized setting where a number of judicial cases, indexed by i, are assigned

to one of nY judges who worked in a given court during a specified time period (e.g.

a quarter). Let Yi denote the judge that case i is assigned to. Label judges from 1 to

nY , so that Yi is an observed random variable that takes values in {1, . . . , nY }.

In this setting, there exist regulations that specify how cases should be assigned

to these judges. For example, regulations could mandate simple random assignment,

or simple random assignment among a subset of judges. In practice, however, case i’s

assignment may be irregular, or inconsistent with the regulations. Let Si indicate if i’s

assignment is irregular or not. This is a latent, binary random variable.

Irregular assignments can arise for various reasons, which I will not attempt to

distinguish at this stage. Some reasons, such as administrative errors, do not necessarily

involve illegal behavior; others, such as transactions in the black market for judges, do;

and some may involve behavior whose legal status is unclear, as with judge shopping,

the practice of filing and withdrawing the same case multiple times until the case is

assigned to the desired judge.

Consider two counterfactual assignments for any given case. The first counterfactual

assignment is the judge that case i would have been assigned to, had its assignment

been irregular, Si = 1. The second one is the judge that case i would have been assigned

to, had its assignment been regulatory, or consistent with the regulations, Si = 0. We

denote counterfactual irregular assignments with variable Yi(1) and counterfactual reg-

ulatory assignments with variable Yi(0). They relate to actual assignments Yi according
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to the potential outcomes equation:

Yi = SiYi(1) + (1− Si)Yi(0). (1)

That is, the judge that case i is assigned to equals Yi(1) if i’s assignment is irregular

(Si = 1), and equals Yi(0) otherwise.

For the sake of illustration, I implicitly condition on case i’s covariates. I am inter-

ested in two parameters: the rate of irregular assignments, and the judge-specific rates

of irregular assignments: Pr(Si = 1) and Pr(Si = 1 |Yi = y∗) for each y∗ ∈ {1, . . . , nY },

respectively. In this setting, these parameters offer a detailed view of the extent and

structure of irregular assignments. They are policy-relevant, since they inform the

allocation of regulatory enforcement resources.

To measure these quantities, we need assumptions. No component on the right-

hand side of (1) is observed. Thus, it is possible that Pr
(
Yi = Yi(1)

)
= 1 and Pr(Si =

1) = Pr(Si = 1 |Yi = y∗) = 1, for all y∗ ∈ {1, . . . , nY }. Similarly, it is possible that

Pr
(
Yi = Yi(0)

)
= 1 and Pr(Si = 1) = Pr(Si = 1 |Yi = y∗) = 0, for all y∗ ∈ {1, . . . , nY }.

I consider two assumptions: that the distribution of regulatory assignments is

known, and that the researcher observes a case characteristic Zi with finite support

Z that does not influence the judge that the case would have been assigned to, had the

case’s assignment been regulatory.

Assumption PMF. The probability mass function of Yi(0) is known.

Assumption IV. Zi is statistically independent of Yi(0).

I now introduce my identification results for the parameters of interest under each

assumption, in turn. At a conceptual level, the discussion of the identification results

under Assumption PMF lays the groundwork to introduce the results under Assumption

IV.
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1.2 Identification Results under Assumption PMF

Assumption PMF states that the distribution of regulatory assignments is known. In

the context of my application, I interpret Ecuadorian assignment regulations to mean

that, within the court where case i is assigned, i’s judge is drawn from a uniform

distribution defined over the set of judges that are competent for case i at the time of

i’s assignment.

Consider the task of measuring the rate of irregular assignments, Pr(Si = 1). Ac-

cording to (1), if case i’s actual and regulatory assignments differ (Yi 6= Yi(0)), then i’s

assignment must be irregular (Si = 1). This means that

Pr(Si = 1) ≥ Pr(Yi 6= Yi(0)).

Pr(Yi 6= Yi(0)) is not identified, since the joint distribution of (Yi, Yi(0)) is unknown.

However, we know the marginal distribution of Yi, since actual assignments are ob-

servable, as well as the marginal distribution of Yi(0), under Assumption PMF. The

unobserved joint distribution of (Yi, Yi(0)) must be consistent with the known marginal

distributions. Therefore, a lower bound on the rate of irregular assignments is the

minimum probability that case i’s actual and regulatory assignments differ that can

be obtained from a joint distribution of (Yi, Yi(0)) that is consistent with the marginal

distributions of Yi and Yi(0).

Let Γ be the set of probability mass functions defined over {1, . . . , nY }×{1, . . . , nY }.

To summarize our discussion:

Pr(Si = 1) ≥ Pr(Yi 6= Yi(0))

≥ min
γ∈Γ

nY∑
y=1

nY∑
y0=1

1{y 6= y0} γ(y, y0) subject to: (2)

(i)

nY∑
y0=1

γ(y, y0) = Pr(Yi = y) for all y ∈ Y

(ii)

nY∑
y=1

γ(y, y0) = Pr(Yi(0) = y0) for all y0 ∈ Y.

Problem (2) is a discrete optimal transport problem (see Galichon (2016)). Be-

cause of its binary cost function, which assigns a cost of one if actual and regulatory
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assignments differ (y 6= y0) and a cost of zero if they do not, problem 2 is particularly

tractable. Indeed, its closed-form solution equals half of the absolute (`1, Taxicab, Man-

hattan) distance between the marginal distributions of Yi and Yi(0) (see Propositions

4.2 and 4.7 of Levin and Peres (2017) for a textbook treatment):

1

2

nY∑
y=1

∣∣∣Pr(Yi = y)− Pr(Yi(0) = y)
∣∣∣.

A similar reasoning produces a lower bound for the judge-specific rates of irregular

assignments. Consider judge y∗ ∈ {1, . . . , nY } and parameter Pr(Si = 1 |Yi = y∗).

Model (1) implies that:

Pr(Si = 1, Yi = y∗) ≥ Pr(Yi 6= Yi(0), Yi = y∗).

That is, if case i’s actual and regulatory assignments differ, then i’s assignment is irreg-

ular, irrespective of the judge that the case was actually assigned to. Pr(Yi 6= Yi(0), Yi =

y∗) is not identified, since we do not observe the joint distribution of (Yi, Yi(0)). How-

ever, the data on actual assignments and Assumption PMF allow us to place a lower

bound on this quantity with the minimum probability that Yi 6= Yi(0) and Yi = y∗

that can be obtained from a joint distribution of (Yi, Yi(0)) that is consistent with the

marginal distributions of Yi and Yi(0):

Pr(Si = 1, Yi = y∗) ≥ Pr(Yi 6= Yi(0), Yi = y∗)

≥ min
γ∈Γ

nY∑
y0=1

1{y∗ 6= y0} γ(y∗, y0) subject to: (3)

(i)

nY∑
y0=1

γ(y, y0) = Pr(Yi = y) for all y ∈ Y

(ii)

nY∑
y=1

γ(y, y0) = Pr(Yi(0) = y0) for all y0 ∈ Y.

Once again, (3) is an optimal transport problem. Its cost function assigns a cost of

one if actual and regulatory assignments differ and the actual assignment is judge y∗,

and assigns zero cost otherwise. In this case, the closed-form solution to this problem

is simply the amount of cases assigned to judge y∗, beyond the amount of cases that

should have been assigned to judge y∗:

max
{

0, Pr(Yi = y∗)− Pr(Yi(0) = y∗
}
.
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Thus, Assumption PMF will place informative lower bounds on the rates of irregular

assignments, to the extent that the distributions of actual and regulatory assignments

differ. In contrast, Assumption PMF does not place an informative upper bound on

these quantities. Because Assumption PMF does not place any restrictions on the

distribution of irregular assignments, Yi(1), it is consistent with the possibility that

assignments coincide with irregular assignments: Pr(Yi = Yi(1)) = 1. In this case,

every case assignment can be irregular: Pr(Si = 1) = Pr(Si = 1 |Yi = y∗) = 1 for all

y∗ ∈ {1, . . . , nY }. Proposition 1 summarizes the discussion.

Proposition 1. If Assumption PMF holds, then

1.
1

2

nY∑
y=1

∣∣∣Pr(Yi = y) − Pr(Yi(0) = y)
∣∣∣ ≤ Pr(Si = 1) ≤ 1.

2. For all y∗ ∈ {1, . . . , nY },

max

{
0,

Pr(Yi = y∗)− Pr(Yi(0) = y∗)

Pr(Yi = y∗)

}
≤ Pr(Si = 1 |Yi = y∗) ≤ 1.

These bounds are sharp.

Proposition 1, proven in Appendix C, asserts that the lower bounds that I have

introduced are sharp. This means that, for each bound, there exists a joint distribution

of the data, (Yi(0), Yi(1), Si), that is consistent with the known distribution of Yi(0) and

with the distribution of actual assignments under equation (1), and generates the given

bound. Informally, this means that more information on the parameters of interest

cannot be obtained without more data or further assumptions.

Daljord, Pouliot, Xiao, and M. Hu (2021) first proposed the solution to problem

(2) as a lower bound on the quantity of black market transactions of license plates in

China, following the introduction of a lottery-based rationing system. In their setting,

the observed outcome is the price of the car associated with license plate i, and they

use the fact that license plates were supposed to be allocated by a lottery to obtain the

distribution of car prices in the absence of a black market. Proposition 1 shows that

this lower bound is sharp and, hence, promotes the estimand they propose.
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1.3 Identification Results under Assumption IV

Under Assumption IV, one observes case characteristics Zi which, in conjunction with

(1), may generate variation in actual assignments Yi through Si and/or Yi(1) exclusively.

Because Zi is excluded only from Yi(0), I call it a one-sided instrument. It differs from

the traditional exclusion restriction (e.g. Imbens and Angrist 1994), whereby the instru-

ment generates variation in assignments through Si only (i.e. statistical independence

holds with respect to (Yi(0), Yi(1))). It also differs from the exclusion restriction pro-

posed by Henry, Kitamura, and Salanié (2014), which requires that Zi be independent

of Yi, conditional on Si.
3

Case characteristics Zi are discrete. In my application, Zi is a binary measure

of the amount of paperwork submitted by the plaintiff/prosecutor when she files the

case. In support of Assumption IV, I argue that Ecuadorian regulations do not contain

specific assignment procedures for cases that differ along this dimension, and that this

case characteristic is independent of the case characteristics that determine regulatory

assignments. Notice that the traditional exclusion restriction, Zi ⊥⊥ (Yi(0), Yi(1)), is

unlikely to hold for Zi. Indeed, Zi is presumably correlated with irregular assignments,

Yi(1): plaintiffs that file cases with larger amounts of paperwork may value judge

attributes differently from others. Plaintiffs with different preferences over judges would

select different judges if they were given the chance to do so.

Consider the task of measuring the rate of irregular assignments, Pr(Si = 1), under

Assumption IV. I proceed as in the discussion of identification under Assumption PMF.

Conditional on instrument realization z ∈ Z, where Z is the finite support of Zi, a case’s

assignment is irregular if its actual assignment differs from its regulatory assignment, by

model (1). This observation yields a lower bound on the rate of irregular assignments

conditional on Zi = z:

Pr(Si = 1 |Zi = z) ≥ Pr(Yi 6= Yi(0) |Zi = z).

3An equivalent formulation of this statement in terms of potential outcomes is that Zi is independent of

Yi(1) within the subpopulation with Si = 1 and that Zi is independent of Yi(0) within the subpopulation

with Si = 0.
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A further lower bound on Pr(Si = 1 |Zi = z) is given by the minimum probability

that case i’s actual and regulatory assignments differ, conditional on Zi = z, that can

be obtained from a joint distribution of (Yi, Yi(0)) |Zi = z that is consistent with the

marginal distributions of Yi |Zi = z and Yi(0) |Zi = z:

Pr(Si = 1 |Zi = z) ≥ Pr(Yi 6= Yi(0) |Zi = z)

≥ min
γ∈Γ

nY∑
y=1

nY∑
y0=1

1{y 6= y0} γ(y, y0) subject to: (4)

(i)

nY∑
y0=1

γ(y, y0) = Pr(Yi = y |Zi = z) for all y ∈ Y

(ii)

nY∑
y=1

γ(y, y0) = Pr(Yi(0) = y0 |Zi = z) for all y0 ∈ Y,

=
1

2

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = z) − Pr(Yi(0) = y |Zi = z)
∣∣∣

where Γ is the set of probability mass functions defined over {1, . . . , nY }×{1, . . . , nY }, as

before, and the last equality follows from the binary cost structure of optimal transport

problem (4). It follows that

Pr(Si = 1) =
∑
z∈Z

Pr(Zi = z) Pr(Si = 1 |Zi = z)

≥ 1

2

∑
z∈Z

Pr(Zi = z)

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = z) − Pr(Yi(0) = y |Zi = z)
∣∣∣

=
1

2

∑
z∈Z

Pr(Zi = z)

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = z) − Pr(Yi(0) = y)
∣∣∣,

where the last equality follows Assumption IV. This lower bound is not identified,

however, since the marginal distribution of Yi(0) is unknown. A further lower bound

that is observable is the lowest possible lower bound that is implied by a distribution

of Yi(0). Let Φ be the set of probability mass functions defined over {1, . . . , nY }. It

follows that

Pr(Si = 1) ≥ min
φ∈Φ

1

2

∑
z∈Z

Pr(Zi = z)

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = z) − φ(y)
∣∣∣. (5)

When Zi is binary, so that Z = {0, 1}, this problem has a closed-form solution. To
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see this, let pmin ≡ min{Pr(Zi = 0),Pr(Zi = 1)}. For any φ ∈ Φ, it follows that

1

2

∑
z∈Z

Pr(Zi = z)

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = z) − φ(y)
∣∣∣

=
1

2
Pr(Zi = 0)

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 0) − φ(y)
∣∣∣

+
1

2
Pr(Zi = 1)

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 1) − φ(y)
∣∣∣

≥ pmin

2

 nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 0) − φ(y)
∣∣∣+

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 1) − φ(y)
∣∣∣


≥ pmin

2

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 0) − Pr(Yi = y |Zi = 1)
∣∣∣,

where the last inequality follows from the triangle inequality. Moreover, this quantity

is achieved by φ∗, where

φ∗(y) =


Pr(Yi = y |Zi = 0) if Pr(Zi = 1) ≤ Pr(Zi = 0)

Pr(Yi = y |Zi = 1) otherwise.

The following proposition summarizes.

Proposition 2. If Assumption IV holds, then

1. min
φ∈Φ

1

2

∑
z∈Z

Pr(Zi = z)

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = z) − φ(y)
∣∣∣ ≤ Pr(Si = 1) ≤ 1

2. For all y∗ ∈ {1, . . . , nY }, 0 ≤ Pr(Si = 1 |Yi = y) ≤ 1.

In addition, if Zi is binary, so that Z = {0, 1}, then

pmin

2

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 0) − Pr(Yi = y |Zi = 1)
∣∣∣ ≤ Pr(Si = 1) ≤ 1,

where pmin ≡ min{Pr(Zi = 0),Pr(Zi = 1)}. Each of these bounds is sharp.

Proposition 2, proven in Appendix C, shows that binary instruments that yield

informative lower bounds on Pr(Si = 1) will satisfy two conditions. First, a relevance

condition: Zi must induce variation in assignments for the absolute distance between

the conditional assignment distributions to be positive. Second, Zi must be relatively
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balanced. This is intuitive: if the mass of cases with Zi = 0 is small, the lower bound

on Pr(Si = 1) arises when regulatory assignments Yi(0) are distributed according to

Yi |Zi = 1, in which case only a small fraction of cases’ assignments may be irregular.

Proposition 2 also shows that Assumption IV does not yield informative bounds on

Pr(Si = 1 |Yi = y). Intuitively, this follows because, if judge y is assigned a substantial

amount of cases with Zi = 0 but no cases with Zi = 1, she could either have several

cases with irregular assignments if Pr(Yi(0) = y) = Pr(Yi = y |Zi = 1), or no cases with

irregular assignments if Pr(Yi(0) = y) = Pr(Yi = y |Zi = 0), and Assumption IV cannot

distinguish between these possibilities. Thus, my measurements of judge-specific rates

of irregular assignments in Ecuador will necessarily involve Assumption PMF.

Furthermore, Proposition 2 shows that Assumption PMF does not place an in-

formative upper bound on the parameters of interest. The intuition for this result

is that Assumption IV, like Assumption PMF, does not restrict the distribution of

irregular assignments, Yi(1), so that it is consistent with Pr(Yi = Yi(1)) = 1, and

Pr(Si = 1) = Pr(Si = 1 |Yi = y∗) = 1 for all y∗ ∈ {1, . . . , nY }.

Finally, the bounds that Proposition 2 presents are sharp. This means that, for each

bound, there exists a joint distribution of the latent and observed data, (Yi(0), Yi(1), Si, Zi),

that satisfies Assumption IV, is consistent with the observed joint distribution of (Yi, Zi)

under model (1), and generates the given bound. Informally, this means that more infor-

mation on the parameters of interest cannot be obtained without more data or further

assumptions.

15



2 Identification Analysis

This section develops the theory of identification that underlies propositions 2 and 1,

in a setting with explicit covariates.

In addition to the discrete random variables Yi and Zi, the researcher observes case

characteristics Xi. Xi is a random vector that takes values in finite set X . In the

empirical framework of section 4, these characteristics will be the case’s court, field of

law and time period of assignment. I reformulate Assumptions IV and PMF as:

Assumption IVx. Zi is statistically independent of Yi(0), conditional on Xi.

Assumption PMFx. The probability mass function of Yi(0) |Xi = x is known, for all

x ∈ X .

Note that if Xi is degenerate, then Assumptions IVx and PMFx are identical to As-

sumptions IV and PMF.

The joint distribution of
(
Yi(0), Yi(1), Si, Zi

)
, conditional on covariates Xi, is the

cornerstone of the identification analysis, for three reasons. First, the available data,

i.e. the probability mass function of (Yi, Zi, Xi), constitute restrictions on this distribu-

tion, under equation (1). Second, assumptions IVx and PMFx can be reformulated as

restrictions on this distribution. Finally, any feature of the joint distribution of the data

that we do not observe, any parameter, can be seen as a function of this distribution.

Let F denote the set of probability mass functions of
(
Yi(0), Yi(1), Si, Zi

)
conditional

on Xi. f denotes a typical element of F , and f(y0, y1, s, z |x) denotes a typical value

of f .

I proceed in two steps. First, I obtain the restrictions imposed by our data and

assumptions on the primitive conditional distribution, f , to define its identified set.

Then, I define the identified sets for the parameters of interest and characterize them.
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2.1 Identified set for f

The identified set for f is the set of all distributions in F that are observationally

equivalent under model (1), and are consistent with assumptions IVx and PMFx. f ∈ F

satisfies observational equivalence under model (1) if:

∑
y0,y1,s

1
{
sy1+(1−s)y0 = y

}
f
(
y0, y1, s, z |x

)
= Pr(Yi = y, Zi = z |Xi = x) ∀ y, z, x.

(ROE)

In other words, f is observationally equivalent whenever its implied distribution of

(Yi, Zi) |Xi under model (1) matches that which is observed. Next, any f that is

observationally equivalent is consistent with Assumption IVx if:

∑
y1,s

f(y0, y1, s, z |x) = Pr(Zi = z |Xi = x)
∑
y1,s,z̃

f(y0, y1, s, z̃ |x). ∀ y0, z, x.

(RIV)

That is, f is consistent with Assumption IVx if its implied distribution of (Yi(0), Zi) |Xi =

x equals the product of the implied marginal distributions. Notice that the implied

distribution of Zi |Xi equals the observed distribution by observational equivalence.

Finally, f ∈ F is consistent with Assumption PMFx if:

∑
y1,s,z

f(y0, y1, s, z |x) = Pr(Yi(0) = y0 |Xi = x) ∀ y0, x, (RPMF)

where Pr(Yi(0) = y0 |Xi = x) is known, for all y0 ∈ {1, . . . , nY } and x ∈ X .

Assumptions IVx and PMFx are associated with identified sets F?IV and F?PMF,

respectively, where

F?IV ≡
{
f ∈ F : f satisfies restrictions (ROE) and (RIV)

}
and

F?PMF ≡
{
f ∈ F : f satisfies restrictions (ROE) and (RPMF)

}
.

The case where both Assumptions IVx and PMFx are imposed need not be treated

separately. Under both assumptions, the distribution of Yi(0) |Xi, Zi equals that of

Yi(0) |Xi, which is known. Hence, both assumptions can be cast as Assumption PMFx

with covariates X̃i = (Xi, Zi).
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Description Parameter of Interest c(y0, y1, s, z, x)

Rate of Irregular Assignments Pr(Si = 1) Pr(Xi = x) · 1{s = 1}

Judge y∗’s Rate of Irregular

Assignments
Pr(Si = 1 |Yi = y∗)

Pr(Xi = x)

Pr(Yi = y∗)
· 1{s = 1} · 1{y1 = y∗}

Rate of Irregular Assignments,

given Xi = x0

Pr(Si = 1 |Xi = x0) 1{x = x0} · 1{s = 1}

Rate of Irregular Assignments,

given Xi ∈ X0

Pr(Si = 1 |Xi ∈ X0 ⊆ X )
Pr(Xi = x)

Pr(Xi ∈ X0)
· 1{x ∈ X0} · 1{s = 1}

Table 1: Coefficients of the Linear Parameters of Interest

2.2 Identified sets for parameters of interest

I cast parameters as linear functions of distributions in F , θ : F 7→ Rdθ , where dθ is

the dimensionality of parameter θ. Each parameter θ = (θ1, . . . , θdθ) that I consider is

associated with dθ vectors of known non-negative coefficients c = (c1, . . . , cdθ), so that

θ(f ; c) ≡


∑

y0,y1,s,z,x
c1(y0, y1, s, z, x) f(y0, y1, s, z |x)

...∑
y0,y1,s,z,x

cdθ(y0, y1, s, z, x) f(y0, y1, s, z |x)

 .

When θ is scalar, θ(f ; c) ≡
∑

y0,y1,s,z,x
c(y0, y1, s, z, x) f(y0, y1, s, z |x). The iden-

tified set for parameter θ(· ; c) is the set of parameter values that are associated with

distributions that belong to the identified set for f :

Θ?
IV(c) ≡ {θ(f ; c) : f ∈ F?IV} and

Θ?
PMF(c) ≡ {θ(f ; c) : f ∈ F?PMF}.

Table 1 shows that all of our parameters of interest are linear and presents the associ-

ated vectors of coefficients.4

4In fact, linear parameters are widespread. See, e.g. Mogstad, Santos, and Torgovitsky (2018). For

example, the expectation of counterfactual outcome Yi(1) is the linear parameter associated with coefficients

c1, where c1(y0, y1, s, z, x) = y1; the “Average Treatment Effect” — the average difference between Yi(1) and
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I now turn to the characterization, or computation, of identified sets. Notice first

that F?IV and F?PMF are convex sets: the convex combination of any two elements of

F?IV (or F?PMF) is a well-defined probability mass function that also satisfies restrictions

(ROE) and (RIV) (or (RPMF)). It is well defined because F , the set of probability

mass functions of
(
Yi(0), Yi(1), Si, Zi

)
conditional on Xi, is convex. It satisfies these

restrictions because the solution set to (ROE) and (RIV) (or (RPMF)) is convex, which

follows from the fact that these restrictions are linear equations in f .

Now, fix non-negative coefficients c and consider parameter θ(· ; c). Its identified

sets, Θ?
IV(c) and Θ?

PMF(c), are also convex. In particular, let f1, f2 ∈ F?IV. For a given

λ ∈ [0, 1], λf1 + (1− λ)f2 ∈ F?IV and

λ θ(f1; c)︸ ︷︷ ︸
∈Θ?IV(c)

+ (1− λ) θ(f2; c)︸ ︷︷ ︸
∈Θ?IV(c)

= θ
(
λf1 + (1− λ)f2; c

)
∈ Θ?

IV(c).

Thus, the identified set for a scalar and linear parameter under either Assumption

IVx or PMFx equals an interval in R+. What is left to determine are the two extreme

points of this interval, also known as the sharp bounds. But this is straightforward:

since the parameter and the restrictions are linear, the extreme points of this interval

equal the solution to two linear programming problems that minimize/maximize the

parameter value subject to restrictions (ROE), (RIV) and (RPMF). That is, given a

vector of non-negative coefficients c, Θ?
IV(c) =

[
θIV(c), θIV(c)

]
, where

θIV(c) = min
f∈F

θ(f ; c) subject to (ROE) and (RIV)

θIV(c) = max
f∈F

θ(f ; c) subject to (ROE) and (RIV),

and θPMF(c) and θPMF(c) are defined analogously.

For our parameters of interest, listed in Table 1, these linear programs either have

closed-form solutions or simpler formulations. Table 2 lists the results for parameters

Pr(Si = 1 |Xi = x) and Pr(Si = 1 |Yi = y∗, Xi = x) and Appendix C proves them.

Sharp lower bounds for more aggregate parameters such as Pr(Si = 1) or Pr(Si =

Yi(0) — is the linear parameter associated with cATE , where cATE(y0, y1, s, z, x) = y1 − y0; the probability

that Yi(1) (or Yi(0)) equals a given y ∈ Y is also a linear parameter. Moreover, the versions of these

parameters that condition on Xi = x or Yi = y are also linear.
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Assumption Parameter of Interest θ(c) θ(c)

IVx Pr(Si = 1 |Xi = x) min
φ∈Φ

∑
z,y

1

2
Pr(Zi = z |x)

∣∣∣Pr(Yi = y |x, z) − φ(y |x)
∣∣∣, 1

where Φ is the set of p.m.f.s of Yi(0) |Xi.

IVx Pr(Si = 1 |Yi = y∗, Xi = x) 0 1

PMFx Pr(Si = 1 |Xi = x)
1

2

∑
y

∣∣∣Pr(Yi = y |x) − Pr(Yi(0) = y |x)
∣∣∣ 1

PMFx Pr(Si = 1 |Yi = y∗, Xi = x) max

{
0,

Pr(Yi = y∗ |x)− Pr(Yi(0) = y∗ |x)

Pr(Yi = y∗ |x)

}
1

Table 2: Sharp Bounds on the Parameters of Interest, conditional on Xi = x.

1 |Yi = y∗) can be obtained from the lower bounds listed in Table 2 through appropriate

aggregation. In particular, the lower bound for Pr(Si = 1) under Assumption PMFx

equals:

∑
x∈X

Pr(Xi = x)

1

2

nY∑
y=1

∣∣∣Pr(Yi = y |Xi = x) − Pr(Yi(0) = y |Xi = x)
∣∣∣
 .
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3 Context and Data

This section gives an overview of Ecuador’s judicial system, discusses the existing reg-

ulations on the assignment of cases to judges, and presents the assignment data.

3.1 Context

Unlike federal states, such as Brazil, Mexico, or the United States, Ecuadorian law

is homogeneous across its administrative divisions. Ecuador’s judiciary has a 3-tiered

judiciary, composed of 331 district courts, 24 provincial courts, the National Court of

Justice, and a governing body called the Judicial Council. In this paper, I focus on

case assignments to judges in the country’s district courts.

Table 3 presents the key institutional components that govern the assignment of

cases to judges. Lottery offices deployed throughout the country perform assignments.

Personnel attached to these offices use a dedicated computer program to draw assign-

ments. In the event of a power outage or any other circumstance where the computer

program is not accessible, the personnel draw cases that await assignment sequentially

at random and assign them to available judges, who have been arranged in a pre-defined

order.5 Ecuadorian regulations leave the precise implementation of the computer pro-

gram to the Judicial Council. In a recent interview, however, the president of the

Judicial Council briefly explains the implementation: the computer program assigns

cases at random among available judges who have a relatively low case workload at the

time of assignment. Finally, judges who are available for a given case must work in

5This procedure dates from 2004, when assignments were still being performed manually in some Ecuado-

rian provinces. Since 2013, all case assignments are computer-based by default.
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courts that have competence over the case’s field of law6 and location.7

Ecuador offers an ideal setting to study irregular assignments of cases to judges,

for two reasons. First, this topic is salient and raises concerns among public officials

in the Judicial Council, and among the general public. In recent months, several case

assignment scandals have surfaced which involve judges in courts across the country as

well as high profile individuals, such as the mayor of Quito, the country’s capital, who

was recently removed from office.8

Second, large scale access to case-level assignment information across the country’s

courts is possible for non-confidential cases, and this information is regularly updated

by the Judicial Council.9 In Latin America, this is exceptional: case-level assignment

data is scattered across different judiciaries in federal states such as Mexico or Brazil,

and large scale access to case assignment information is effectively denied to the general

public in countries such as Argentina, Chile, Colombia, Mexico or Peru.

6Each district court has competence over cases that belong to a subset of the following fields of law:

criminal law (e.g. a homicide), civil law (e.g. a payment dispute that involves a bank and a credit card

debtor), administrative law (e.g. a dispute related with a government contract), tax law (e.g. a tax payment

dispute), juvenile law (e.g. a robbery conducted by someone under 18 years of age), transit law (e.g. drunk

driving), family violence law (e.g. a case of household violence), family law (e.g. a divorce), labor law (e.g.

wrongful termination of an employee) and landlord-tenant law.

7The Judicial Council specifies the territory associated with each court. In general, the location of criminal

cases is the location where the alleged crime was committed and the location of other cases is the address

of the defendant. See article 404 of Código Orgánico Integral Penal 2014, which contains further rules to

obtain the jurisdiction if the location of the crime is unknown, and articles 9-15 of Código Orgánico General

de Procesos 2015.

8See the media coverage here, here, here, and here.

9Confidential cases are those that involve sexual crimes, family violence, and crimes against the state.

See article 562 of Código Orgánico Integral Penal (2014). Crimes against the state are listed in arts. 336-

365. They include rebellion, insubordination of military and police personnel, sabotage, treason, espionage,

non-authorized possession of firearms and arms dealing.
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Regulation Original text Source

The use of the automatic system

for case lotteries is compulsory in

all districts that have the

technological facilities and the

system installed.

En los distritos que cuentan con las

facilidades tecnológicas y se encuentre

instalado el sistema automático de

sorteo de causas para primera y

segunda instancia, su uso será

obligatorio.

Article 9,

Reglamento

de Sorteo de

Juicios (2004)

Districts that do not have the

system installed will perform

lotteries as follows: after

numbering the cases, one ticket

for each case is inserted in a

container. Tickets are then

randomly drawn and determine

the judge that the case must be

assigned to.

En los distritos o lugares carentes del

sistema informático para el sorteo éste

tendrá el procedimiento siguiente:

Numeradas las demandas o expedientes

con arreglo en un recipiente apropiado

se colocarán tantas fichas cuantas sean

aquellos. Estas fichas se sacarán por la

suerte y determinarán a los jueces que

deben conocer de las causas.

Article 11,

Reglamento

de Sorteo de

Juicios (2004)

The algorithm of the system

assigns cases to judges randomly,

according to the judges’ case

workloads. That is, if we have five

judges and each judge has a case

workload of ten, then (the

system) assigns randomly. But if

one of them has a case workload

of one hundred, then the system

skips that judge, because she has

too high a workload

El algoritmo del sistema asigna de

manera aleatoria las causas segun la

carga procesal que tenga un juzgador.

Es decir, si tenemos cinco juzgadores,

los cinco tienen carga procesal de diez,

entonces va asignando aleatoriamente.

Pero si a uno de ellos se le pone una

carga procesal de cien causas en

trámite, entonces el sistema se salta ese

juzgador porque tiene muchas causas

en trámite

Minutes 5:48 –

6:30 of an

interview with

the President

of the Judicial

Council,

available here.

Table 3: Ecuadorian Case Assignment Regulations

Note: English translations are my own.
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3.2 Data

My data is a collection of lottery certificates that record individual judicial case assign-

ments to judges. I source this data from http://consultas.funcionjudicial.gob.

ec/informacionjudicial/public/informacion.jsf, a website that is maintained by

Ecuador’s judicial regulator, the Consejo de la Judicatura. This public website makes

available to the public the government’s unique database of judicial cases, called Sis-

tema Automático de Trámite Judicial Ecuatoriano.10

Every judicial case in the country is given a unique identifier at the time of filing

that consists of a two digit number that is associated with each of Ecuador’s twenty-

four provinces, a three digit number used by the Judicial Council for internal purposes,

the four-digit year, and a consecutive number. My data collection exercise requested

the information on file for every possible judicial case unique identifier over a period

of two months in 2021. For each successful request, I obtained a plain text .html file

that contained the case’s lottery certificate. I then extracted the lottery certificate from

this file. For each certificate, I extracted and processed the date when the assignment

is produced, the case’s reported field of law, the court where the case is assigned, the

judge that the case is assigned to, and the amount of paperwork that the plaintiff or

prosecutor submits when the case is filed. Figure 1 depicts a lottery certificate, as it

appears in the government’s webpage.11

My data collection exercise returns 2 million lottery certificates that record assign-

ments made in district courts between March, 2016 and February, 2020. I chose the

beginning of my sample period for practical reasons: before this time, lottery certifi-

cates come in a vast array of formats, which makes the construction of accurate text

processing programs a daunting task. I chose to end my sample period before the onset

of the SARS-CoV-2 pandemic, which had a sizeable impact on the judiciary’s activities,

as Figure 2 shows.

10See Machasilla, Mej́ıa, and Torres Feraud (2020) for a description of this database, and articles 118−119

in Código Orgánico General de Procesos (2015) and 578− 579 in Código Orgánico Integral Penal (2014) for

the legal content requirements of this database.

11The black regions conceal the case’s identifiable information.
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Figure 1: An annotated lottery certificate

Figure 2: Lottery certificates over time

Percentiles

5 10 25 50 75 90 95 observations

Certificates per Judge 10 72 582 1213 1886 2937 3827 1568

Certificates per Court 17 152 1408 3118 6025 16348 31815 331

Plaintiff Paperwork 0 0 1 5 12 26 44 2, 023, 010

(number of pages)

Table 4: Summary Statistics
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4 Empirical Framework

This section presents the model that I take to the Ecuadorian setting, adapts the

identification results from section 1 and discusses statistical inference.

4.1 Setting

Section 1.1 presented an econometric model of case assignments within a given court,

field of law and time period. Now, the model’s scope includes every Ecuadorian district

court and field of law, between March, 2016 and February, 2020. In section 1.1, data

units were judicial cases. Now, they are lottery certificates, although I continue to refer

to them as cases.

For each case, the data reveal the case’s field of law and the court where it is

assigned, Xi, as well as the date and time of assignment, Ti. nY ≡ 1568 judges worked

in Ecuadorian district courts during this time period. Label judges from 1 to nY , so

that the judge that case i is assigned to, Yi, is a categorical random variable that takes

values in {1, . . . , nY }. Moreover, I observe the page count of paperwork filed by case

i’s plaintiff or prosecutor, Zi. This is a random variable that takes values in finite set

Z. In the main specification, Zi is binary and indicates if the page count exceeds 5,

the median page count in the data.

The recent case assignment scandals and my conversations with Judicial Council

officials reveal a variety of ways that give rise to irregular assignments. Personnel who

work in the case assignment offices may manipulate the Judicial Council’s computer

program that generates assignments in order to direct assignments. Third parties may

infiltrate the Judicial Council’s computer system and direct assignments. Judges may

call in sick in order to avoid being assigned to specific cases. The cases’ locations

can be manipulated so as to target certain courts and the cases’ fields of law can be

misrepresented so as to target certain judges.

I distinguish two classes of irregular assignments: those that involve manipulations

of the judge that is selected in the court where the case is assigned and given the case’s
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field of law, and those that involve manipulations of the case’s court or field of law. I

perform my analysis conditional on Xi, so that I will focus exclusively on the former

class of irregular assignments. Therefore, Si indicates if i’s assignment belongs to this

class of irregular assignments. This distinction is implicit in the econometric model of

section 1, which is a model of case assignments in a given court. Case i’s assignment

is irregular if Si = 1. Otherwise, it is regulatory. As in section 1, Yi(0) denotes case i’s

counterfactual regulatory assignment, and Yi(1) denotes case i’s counterfactual irregular

assignment. They relate with actual assignments according to (1).

4.2 Assumptions

Let Ti be the quarter and year when case i is assigned. Assumption IVe asserts that Zi

is a one-sided instrument, conditional on the case’s court, field of law and quarter-year

of assignment.

Assumption IVe. Zi is independent of Yi(0), conditional on (Xi, Ti).

The motivation for Assumption IVe is that cases with different amounts of plaintiff

or prosecutor paperwork should not be assigned to judges differently, irrespective of

where and when they are assigned. The threat to Assumption IVe are fluctuations

in the composition of plaintiff or prosecutor paperwork within court, field of law and

quarter. Judges who are active in times when a large share of incoming cases have

extensive plaintiff paperwork would receive cases with more plaintiff paperwork than

others. Assumption IVe rules out this compositional variation.

Assumption IVe corresponds with Assumption IVx with covariates Xi and Ti. Thus,

rows 1 and 2 of Table 2 list the sharp bounds for Pr
(
Si = 1 |Xi = x, Ti = t

)
and

Pr
(
Si = 1 |Yi = y,Xi = x, Ti = t

)
, respectively, for any x and t.

The second assumption that I consider is that case i’s regulatory assignment is

uniformly distributed over the set of judges that are competent for i. In a given time

and place, a judge is competent for case assignments if she should be available for

assignments. Appointed judges need not be competent. At times, they may be on a
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legitimate medical leave or on vacation, for example. Competent judges need not be

available: a judge that takes a medical leave so as to avoid a specific case should have

been available when the case was assigned.

To state the identification assumption formally, let Jxt be the set of competent

judges in court and field of law x at time t. I discuss how I measure this set in

appendix section A. Define T Ji as the largest time interval that contains case i’s time of

assignment, Ti, and features the same set of competent judges in Xi, i.e. the joint judge

spell when case i was assigned. Concretely, T Ji = T J(Xi, Ti), where T J(x, t) =
[
t, t
]

and t, t satisfy:12

i. t ∈
[
t, t
]

ii. t− t = sup
{
τ − τ : t ∈

[
τ , τ

]
and Jxt = Jxτ for all τ ∈

[
τ , τ

]}
.

t and t are uniquely defined.13

Assumption PMFe. Yi(0) |Xi = x, T Ji = t ∼ Unif (Jxt) where t ∈ t, for all x and

t.

Two features of the institutional setting, listed in Table 3, motivate Assumption

PMFe. First, the case assignment procedure that was in place before the implementa-

tion of the Judicial Council’s computer system, and is still in place when the computer

system is out of order implies that cases be assigned to competent judges with equal

probabilities. Second, the President of the Judicial Council confirmed in a recent public

interview that the computer system draws assignments randomly.

12t = t(x, t) and t = t(x, t). I omit these arguments for conciseness.

13Let t1, t1 and t2, t2 satisfy i. and ii. Since they satisfy i.,
[
t1, t1

]
∩
[
t2, t2

]
6= ∅. Define t∗ = min{t1, t2}

and t
∗

= max{t1, t2}. Because
[
t∗, t

∗]
=
[
t1, t1

]
∪
[
t2, t2

]
,

sup
{
τ − τ : t ∈

[
τ , τ

]
and Jxt = Jxτ for all τ ∈

[
τ , τ

]}
= t
∗ − t∗

≥ max
{
t1 − t1, t2 − t2

}
.

Thus, t1 = t2 = t∗ and t1 = t2 = t
∗
.
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Assumption PMFe corresponds with Assumption PMFx with covariates Xi and T Ji .

Thus, rows 3 and 4 of Table 2 list the sharp bounds for Pr
(
Si = 1 |Xi = x, Ti = t

)
and

Pr
(
Si = 1 |Yi = y,Xi = x, Ti = t

)
, respectively, for any x and t.

4.3 Statistical Analysis

The bounds presented in sections 1 and 2 are population quantities. In this section, I

discuss their measurement in the Ecuadorian context with data on a finite number of

judicial cases.

A first task is to decide whether or not irregular assignments of cases to judges

occurred within a given set of courts X0 and time period T0. That is, we wish to decide

between the following hypotheses:

H0 : Pr(Si = 1 |Xi ∈ X0, T0) = 0 vs. H1 : Pr(Si = 1 |Xi ∈ X0, T0) > 0. (6)

A second task is to measure Pr(Si = 1 |Xi ∈ X0, T0).

I use the identification results derived and discussed in sections 1 and 2 to address

each of these tasks under Assumptions PMFe and IVe separately, and to address the

measurement of judge-specific measures of irregular assignments under Assumption

PMFe.

4.3.1 Measuring irregular assignments under Assumption PMFe

Given Assumption PMFe, I obtain bounds on aggregate rates of irregular assignments

from the bounds on disaggregate rates shown in Table 2. The rate of irregular assign-

ments within the set of courts X0 and time periods T0 satisfies Pr(Si = 1 |Xi ∈ X0, Ti ∈

T0) ∈ [θPMF(X0, T0), 1] , where

θPMF(X0, T0) =
∑
x,t

Pr(Xi = x, T Ji = t |Xi ∈ X0, T Ji ∈ T0) · θPMF(x, t)

θPMF(x, t) =
1

2

∑
y∈Y

∣∣∣∣ Pr(Yi = y |Xi = x, T Ji = t) − 1{y ∈ Jxt}
#Jxt

∣∣∣∣ .
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Under the hypothesis of no irregular assignments shown in (6), actual and regulatory

assignments coincide, so that the distributions of actual and regulatory assignments

are identical, so that Pr(Yi = y |Xi = x, T Ji = t, ; H0) = 1{y∈Jxt}
#Jxt for all y, x and

t.14 Hence, the distribution of the test statistic θ̂PMF(X0, T0), obtained by replacing

the unknown probabilities in θPMF(X0, T0) with their empirical counterparts, can be

obtained through repeated simulations of judge assignments made according to the

distribution of regulatory assignments. A test of (6) of size α is therefore obtained by

rejecting the null hypothesis whenever θ̂PMF(X0, T0) exceeds the 1− α quantile of this

distribution.

To measure θPMF(x, t), a natural estimator is θ̂PMF(x, t). Unfortunately, this esti-

mator need not be unbiased:

E
[
θ̂PMF(x, t)− θPMF(x, t)

]
=

1

2
E

[∑
y∈Y

∣∣∣∣ P̂r(Yi = y |Xi = x, T Ji = t) − 1{y ∈ Jxt}
#Jxt

∣∣∣∣
−
∣∣∣∣ Pr(Yi = y |Xi = x, T Ji = t) − 1{y ∈ Jxt}

#Jxt

∣∣∣∣
]

≤ 1

2
E

[∑
y∈Y

∣∣∣ P̂r(Yi = y |Xi = x, T Ji = t) − Pr(Yi = y |Xi = x, T Ji = t)
∣∣∣ ]

≤

√
# supp(Yi |Xi = x, T Ji = t)

4 nxt

where nxt is the number of case assignments that we observe in court x and time period

t. The first inequality follows from the triangle inequality for `1 distances and the second

inequality follows from Lemma 5 of Berend and Kontorovich (2013). That θ̂PMF(x, t)

can be a positively biased estimator of θPMF(x, t) is easily seen in the case where there

are no irregular assignments, so that θPMF(x, t) = 0 but Pr
(
θ̂PMF(x, t) > 0

)
> 0. A

bias-corrected estimator of θPMF(x, t) is then:

θ̂
∗
PMF(x, t) = θ̂PMF(x, t) −

√
# supp(Yi |Xi = x, T Ji = t)

4 nxt
,

and, for any given set of courts and time period (X0, T0),I propose to estimate θPMF(X0, T0)

14One can verify this by noticing that, θPMF(X0, T0) = 0 under H0.
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with:

θ̂
∗
PMF(X0, T0) ≡

∑
x,t

P̂r(Xi = x, T Ji = t |Xi ∈ X0, T Ji ∈ T0) · θ̂
∗
PMF(x, t).

Assumption PMFe places informative lower bounds on judge-specific rates of irregu-

lar assignments. According to Table 2, the rate of irregular assignments made to judge

y ∈ Y satisfies Pr(Si = 1 |Yi = y) ∈ [θy, 1], where

θy ≡
∑
x,t

Pr(Xi = x, T Ji = t) ·max

0,
Pr(Yi = y |Xi = x, T Ji = t)− 1{y∈Jxt}

#Jxt
Pr(Yi = y |Xi = x, T Ji = t)

 .

To decide if judge y received irregular assignments or not, consider the following hy-

potheses:

H0 : Pr(Si = 1 |Yi = y) = 0 vs. H1 : Pr(Si = 1 |Yi = y) > 0. (7)

H0 in (7) implies that θy = 0, in which case Pr(Yi = y) ≤ Pr(Yi(0) = y). Suppose that

our data is a realization of n independent and identically distributed random vectors,(
(Yi, Xi, T Ji )

)n
i=1

. I consider test statistic Ty ≡ P̂r(Yi = y) − P̂r(Yi(0) = y), obtained

by replacing the unknown population probabilities in Pr(Yi = y)− Pr(Yi(0) = y) with

their empirical counterparts. The asymptotic distribution of Ty under the assumption

that Pr(Yi = y) − Pr(Yi(0) = y) = 0 is given by an application of the classical central

limit theorem and the delta method. Thus, I reject H0 if Ty exceeds the 1−α quantile

of this distribution, where α is the desired size of the test.

In practice, we wish to conduct the preceding test of hypotheses for every judge. I

implement the procedure from Romano and Wolf (2016) to obtain the p−values asso-

ciated with each of these tests that account for multiple hypothesis testing.

4.3.2 Measuring irregular assignments under Assumption IVe

Given Assumption IVe, the aggregate rates of irregular assignments can be derived

from Table 2. That is, the rate of irregular assignments within the set of courts X0 and
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quarters T0 satisfies Pr(Si = 1 |Xi ∈ X0, Ti ∈ T0) ∈ [θIV(X0, T0), 1] , where15

θIV(X0, T0) =
∑
x,t

Pr(Xi = x, Ti = t |Xi ∈ X0, Ti ∈ T0) · θIV(x, t)

θIV(x, t) = min
φ∈Φ

∑
z∈Z,y∈Y

(
Pr(Zi = z |Xi = x, Ti = t)

2

×
∣∣∣Pr(Yi = y |Zi = z,Xi = x, Ti = t)− φ(y |x, t)

∣∣∣)
and Φ is the set of probability mass functions defined over Y.

Under the hypothesis of no irregular assignments shown in (6), θIV(X0, T0) = 0.

As long as the one-sided instrument has full support within each court and quarter

contained in (X0, T0), θIV(X0, T0) = 0 implies that actual assignments Yi are statistically

independent of the one-sided instrument Zi, conditional on {Xi = x, Ti = t}, for all

x ∈ X0 and t ∈ T0. I propose to use this implication to justify the randomization

hypothesis that underpins a permutation test of (6).

To introduce the test, suppose that we observe the assignment information of n

judicial cases, so that the available data is a realization of the discrete random vector

W ≡
(
(Yi, Zi, Xi, Ti)

)n
i=1

that takes values in set W. Given the set of courts X0 and

quarters T0, consider a map g :W 7→ W such that:

g
(
(y1, z1, x1, t1), (y2, z2, x2, t2), . . . (yn, zn, xn, tn)

)
=

(
(y1, zγ(1), x1, t1), (y2, zγ(2), x2, t2), . . . (yn, zγ(n), xn, tn)

)
,

where

γ(i) =


π(i) if xi ∈ X0 and ti ∈ T0

i otherwise

and π is a permutation on {i : xi ∈ X0 and ti ∈ T0}. Let G be the set of all such

maps.16

Proposition 3. Fix a set of courts X0 and quarters T0 and consider hypothesis H0 :

Pr(Si = 1 |Xi ∈ X0, Ti ∈ T0) = 0. If (i) Assumption IVe holds, (ii)
(
(Yi, Zi, Xi, Ti)

)n
i=1

15Recall that Zi is a discrete random variable that takes values in (finite) set Z.

16I omit the dependence of G on (X0, T0) for notational brevity.
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is independent and identically distributed under H0, and (iii) Pr(Zi = z |Xi = x, Ti =

t) > 0 for all z ∈ Z and for every x ∈ X0 and t ∈ T0 under H0, then W and g(W ) are

identically distributed for all g ∈ G under H0.

Proof. Fix w =
(
(y1, z1, x1, t1), . . . , (yn, zn, xn, tn)

)
∈ W and g ∈ G. Let Iw ≡ {i ∈

{1, . . . , n} : xi ∈ X0, ti ∈ T0} and denote by π the permutation of Iw associated with

g. Under H0, it follows that

Pr(W = w)

= Pr
(
(Yi, Zi, Xi, Ti) = (yi, zi, xi, ti) ∀i /∈ Iw

)
×
∏
i∈Iw

Pr
(
(Xi, Ti) = (xi, ti)

)
Pr
(
Yi = yi |xi, ti

)
Pr
(
Zi = zi |xi, ti

)
= Pr

(
(Yi, Zi, Xi, Ti) = (yi, zi, xi, ti) ∀i /∈ Iw

)
×
∏
i∈Iw

Pr
(
(Xi, Ti) = (xi, ti)

)
Pr
(
Yi = yi |xi, ti

)
Pr
(
Zi = zπ−1(i) |xi, ti

)
= Pr

(
W = g−1(w)

)
= Pr

(
g(W ) = w

)
,

where the first equality uses the fact that H0 and our full support assumption on Zi

imply that Yi ⊥⊥ Zi |Xi = x, Ti = t for all x ∈ X0 and t ∈ T0. �

Proposition 3 states the conditions under which the randomization hypothesis holds,

i.e. the distribution of our data is invariant to transformations in G under the null

hypothesis. To test (6), consider the test statistic θ̂IV(X0, T0), obtained by replacing

the unknown probabilities in θIV(X0, T0) with their empirical counterparts. Under the

randomization hypothesis, the quantiles of the set of test statistic values obtained across

possible transformations of the data g ∈ G serve as the quantiles of the distribution of

the test statistic under the null hypothesis to test (6) at a given size α. For a textbook

treatment of permutation tests, see section 15.2 in Lehmann and Romano (2005).
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5 Results

This section describes my estimates of irregular assignments in Ecuador. The one-

sided instrument detects 9, 347 irregular assignments, 0.46% of total assignments. Four

courts account for over 50% of these irregular assignments. When I impose knowledge of

the distribution of regulatory assignments (Assumption PMFe), I detect more irregular

assignments, in more courts and among 7% of judges.

Table 5 shows the estimated lower bounds on the overall overall rate of irregular

assignments and the rates of irregular assignments for civil and criminal cases separately.

Across specifications, column (1) shows lower bounds of around six percent. These lower

bounds have substantive positive biases, however. The magnitude of the bias can be

seen in columns (2), (3) and (4), which give the fifth, median and ninety-fifth quantiles

of the distributions of the estimators under the null hypothesis of an uninformative lower

bound. After subtracting the median of the distribution of the estimators under the null

hypothesis from the point estimates, I find that the one-sided instrument detects over 9

thousand irregular assignments, exclusively among criminal cases. On the other hand,

knowledge of the distribution of regulatory assignments detects irregular assignments

for both criminal and civil cases, and implies at least 64, 929 irregular assignments

overall.

Figure 3a shows that the one-sided instrument’s detections single out a handful of

courts. One court accounts for a third of all irregular assignments detected. In that

court, at least 16% of case assignments are irregular. Moreover, 5 courts account for

over 50% of all assignments detected. Since cases with large amounts of prosecutor

paperwork are sometimes assigned to judges differently from cases with small amount

of prosecutor documentation, this finding suggests that prosecutors of criminal cases in

these courts are involved in irregular assignments. Figure 3b shows that Assumption

PMFe also detects irregular assignments in these courts, which are depicted as the

colored dots.

Finally, Figure 3c shows the lower bounds on the judge-specific rates of irregular

assignments. I reject the null hypothesis of an uninformative lower bound for 111
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judges, out of 1538, using p−values that are corrected for multiple hypothesis testing

(Romano and Wolf 2016). Four judges stand out from the rest. Anecdotally, the judge

with the highest lower bound depicted in Figure 3c faced corruption charges in March

of 2020, shortly after the end of my sample period.
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L̂B percentiles

under H0 : LB = 0

L̂B p5 p50 p95 L̂B − p50 n̂ Irregular Observations

(1) (2) (3) (4) (5) (6) (7)

Panel A: Estimates Based on Assumption IVe

Overall 6.05∗∗∗ 5.57 5.59 5.62 0.46 9,347 2,023,010

By Field of Law:

Civil 6.19 6.14 6.18 6.22 0.00 39 937,765

Criminal 5.94∗∗∗ 5.05 5.08 5.13 0.86 9,303 1,085,245

Panel B: Estimates Based on Assumption PMFe

Overall 6.13∗∗∗ 3.20 3.23 3.26 2.90 64,929 2,241,490

By Field of Law:

Civil 6.00∗∗∗ 3.51 3.56 3.60 2.44 26,776 1,096,693

Criminal 6.25∗∗∗ 2.87 2.92 2.96 3.33 38,144 1,144,797

Table 5: Aggregate Lower Bounds on Irregular Assignments

The three rows in Panel A show the estimation results for the lower bounds on Pr(Si = 1), Pr(Si = 1 |Li = civil) and

Pr(Si = 1 |Li = criminal) in percentage points, respectively, under Assumption IVe. The three rows in Panel B show the results

under Assumption PMFe. Column (1) shows the estimated lower bounds. Columns (2) – (4) show percentiles 5, 50 and 95 of

the distribution of the estimator under the null hypothesis of an uninformative lower bound. In Panel A, this distribution is

obtained from repeated permutations of the instrument realizations. Column (5) substracts the median of these distributions

from the estimated lower bound. Column (6) scales column (5) with the total number of assignments, given in column (7).

Significance levels: ∗∗∗ p < 0.01.
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(a) Irregular Assignments by Court with a

One-Sided Instrument

(b) Irregular Assignments by Court with

Knowledge of Regular Assignments

(c) Irregular Assignments by Judge with Knowledge of Regular Assignments

Figure 3: Disaggregate Lower Bounds on Irregular Assignments

The two top figures show the amount of irregular assignments by court, among the courts whose rate of irregular assignments

is significant at the family-wise error rate of 5%, under Assumption IVe (figure 3a) and under Assumption PMFe (figure 3b).

Irregular assignment amounts are computed as in Table 5: they equal the estimated lower bounds net of the median of the

distribution of the estimator under the null hypothesis of an uninformative lower bound, multiplied by the number of assignments

made in the given court or to the given judge.
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6 Conclusion

In this paper, I developed a method to evaluate a basic aspect of judicial activity: the

assignment of cases to judges. The method yielded measurements on the extent to

which actual assignments violate the regulations that govern them. In particular, it

provided the most informative bounds on the extent of violations that can be achieved

with individual case assignment data and knowledge of the existing regulations. Such

data is available to the public in Ecuador, but is routinely collected by judiciaries

around the world.

In Ecuador, a weak interpretation of the regulations suggested an instrumental

variable that detected irregular assignments in a handful of courts. A stronger inter-

pretation of the regulations implied that 7% of judges who worked in district courts

between March, 2016 and February, 2020 were involved in such assignments, and that

2.9% of case assignments violated the regulations. In either case, the irregular assign-

ments that I detected are highly localized. These findings suggest that the method is

a useful tool to direct regulatory enforcement resources.
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A Measurement of the Set of Competent Judges

Assumption PMFe raises a challenge: which judges are competent in a given court and

field of law x, and point in time t? I consider a judge to be competent in (x, t) whenever

she is active and has a low relative workload.

Competent judges must be in an active spell. Judge y is in an active spell in court

and field of law x at time t if t falls within a window of less than α days between

the time when she was last assigned a case in x, and the time when she will be next

assigned a case in x. Thus, lower values of α require judges to receive cases at a higher

frequency to be considered active. Any choice of α entails two errors. A judge could be

considered active at (x, t) when she actually was not; and a judge could be considered

inactive at (x, t) when she actually was active. High values of α produce the former

errors, whereas low values of α produce the latter errors.

Competent judges must have a case workload that is less than β times the workload

of their peer with the lowest case workload at (x, t). I include this criterion because it

is listed as such by the President of the Judicial Council (see Table 3).

I select parameters α and β so as to obtain conservative lower bounds on the overall

rate of irregular assignments, Pr(Si = 1). Figure A.1 shows that I achieve a conservative

lower bound on this parameter when I ignore judges’ case workloads (β =∞), and when

judges must receive cases at a frequency of at least α = 30 days to be considered active

between assignments.

44



Figure A.1: Lower Bounds on Overall Irregular Assignments across Tuning Parameters

Each cell shows the estimated lower bound on the rate of irregular assignments, Pr(Si = 1), under Assumption PMFe for a

given value of α and β. α is measured in days and equals the minimum frequency of cases assignments made to a judge for her

to be in an active spell. β is the maximum case workload of a judge (relative to the peer with the lowest workload) for her to

be available for case assignments. When β = ∞, judges’ workloads do not determine if they are available for case assignments

or not.
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B Missing Data

In this section, I consider interpretations of the findings in Table 2 that are conscious

of missing judicial case assignment information.

In section 2 of the main text, I assume that the unconditional distribution case

assignment information, (Yi, Zi, Xi), is known or estimable. In the application, however,

the data includes the assignment information of publicly-available judicial cases that I

retrieved from a website of the Ecuadorian government. Three kinds of judicial cases

are therefore missing in my data: non-confidential cases that are unavailable in the

government’s website, non-confidential cases that are available in the government’s

website, but were not retrieved by my data collection exercise, and confidential cases.

Let Mi indicate if case i belongs to one of these three mutually-exclusive categories.

Given the data-collection procedure, only the distribution of case assignment informa-

tion among non-missing judicial cases, (Yi, Zi, Xi) |Mi = 0, can be known or estimable.

The identification results listed in Table 2 are easily adapted to this setting however,

provided the following assumptions are made.

Assumption PMFm. Mi is statistically independent of Yi(0), conditional on Xi.

Assumption IVm. Zi is statistically independent of Yi(0), conditional on Xi and

Mi = 0.

Assumptions PMFx and PMFm amount to taking the distribution of regulatory

assignments, Yi(0), to be known (conditional on Xi). Assumption PMFm requires that

Mi satisfy the one-sided instrument exclusion restriction. In support of this assumption,

I note that Ecuadorian regulations do not specify distinct case assignment procedures

for confidential cases. Under Assumptions PMFx and PMFm, the identification results

in Table 2 hold, conditional on Mi = 0: for all x ∈ X and y∗ ∈ Y,

Pr(Si = 1 |Xi = x,Mi = 0) (A.1)

∈

[
1

2

∑
y

∣∣∣Pr(Yi = y |x,Mi = 0) − Pr(Yi(0) = y |x)
∣∣∣, 1

]
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and

Pr(Si = 1 |Yi = y∗, Xi = x,Mi = 0) (A.2)

∈
[
max

{
0,

Pr(Yi = y∗ |x,Mi = 0)− Pr(Yi(0) = y∗ |x)

Pr(Yi = y∗ |x,Mi = 0)

}
, 1

]
.

On the other hand, Assumption IVm posits that Zi is a one-sided instrument, condi-

tional on the judicial case not being missing. Under Assumption IVm, the identification

results under one-sided instruments in Table 2 hold conditional on Mi = 0: for every

x ∈ X ,

Pr(Si = 1 |Xi = x,Mi = 0) (A.3)

∈

[
min
φ∈Φ

∑
z,y

1

2
Pr(Zi = z |x,Mi = 0)

∣∣∣Pr(Yi = y |x, z,Mi = 0) − φ(y |x)
∣∣∣, 1

]
.

I note that the bounds presented in (A.1), (A.2) and (A.3) are valid for the rates

of irregular assignments among all non-confidential cases, not just among non-missing

cases, under two additional assumptions: that my data-collection exercise fails to re-

trieve the information of available judicial cases at random, and that the assignment

of a non-confidential judicial case that is not available in the government’s website is

more likely to be irregular than that the assignment of a non-confidential case that is

available in the government’s website.
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C Proofs

Lemmas 1 – 5 construct the sharp bounds presented in Propositions 1 and 2 on the

basis of the theory of identification from Section 2. Notice that Propositions 1 and 2

do not involve case covariates, Xi, for the sake of illustration. This means that the

support of Xi, X , is implicitly assumed to be a singleton.

Proof of Proposition 1. By Lemma 1, the sharp upper bound for Pr(Si = 1) and the

sharp upper bounds for Pr(Si = 1 |Yi = y∗) for every y∗ ∈ {1, . . . , nY } all equal one.

By Lemma 5, the sharp lower bound for Pr(Si = 1) is:

∑
y∈Y

1

2

∣∣∣Pr(Yi = y) − Pr(Yi(0) = y)
∣∣∣.

whereas, for any y∗ ∈ {1, . . . , nY }, the sharp lower bound for Pr(Si = 1 |Yi = y∗) is:

max

{
0,

Pr(Yi = y∗) − Pr(Yi(0) = y∗)

Pr(Yi = y∗)

}
.

�

Proof of Proposition 2. By Lemma 1, the sharp upper bound for Pr(Si = 1) and the

sharp upper bounds for Pr(Si = 1 |Yi = y∗) for every y∗ ∈ {1, . . . , nY } all equal one.

By Lemma 3, the sharp lower bound for Pr(Si = 1) is:

∑
y∈Y,z∈Z

pmin

2

∣∣∣Pr(Yi = y |Zi = 0) − Pr(Yi = y |Zi = 1)
∣∣∣

whereas, for any y∗ ∈ {1, . . . , nY }, the sharp lower bound for Pr(Si = 1 |Yi = y∗) equals

zero. �
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Lemma 1. Fix x∗ ∈ X and y∗ ∈ {1, . . . , nY }. Consider the parameter associated

with Pr(Si = 1 |Xi = x∗), θ(f ; c), where c(y0, y1, s, z, x) ≡ 1{x = x∗} · 1{s = 1},

and the parameter associated with Pr(Si = 1 |Yi = y∗, Xi = x∗), θ(f ; cy), where

cy(y0, y1, s, z, x) ≡ 1{x=x∗,y1=y∗}
Pr(Yi=y∗ |Xi=x∗) · 1{s = 1}. Then,

θPMF(c) = θPMF(cy) = θIV(cy) = θIV(c) = 1.

Proof. Let Assumption PMFx hold and define the data-generating process fPMF as:

fPMF(y0, y1, s, z |x) =


0 if s = 0

Pr(Yi(0) = y0 |Xi = x) Pr(Yi = y1, Zi = z |Xi = x) if s = 1.

fPMF is well-defined, since it is weakly positive and adds up to one for each x ∈ X .

Now, fPMF ∈ F∗PMF, since it satisfies restrictions (ROE) and (RPMF). Moreover,

θ (fPMF; c) =
∑

y0,y1,s,z,x

c(y0, y1, s, z, x)fPMF(y0, y1, s, z |x)

=
∑
y0,y1,z

fPMF(y0, y1, 1, z |x∗)

=
∑
y0,y1,z

Pr(Yi(0) = y0 |Xi = x∗) Pr(Yi = y1, Zi = z |Xi = x∗)

=
∑
y1,z

Pr(Yi = y1, Zi = z |Xi = x∗)

= 1.

and

θ (fPMF; cy) =
∑

y0,y1,s,z,x

cy(y0, y1, s, z, x)fPMF(y0, y1, s, z |x)

=
∑
y0,z

fPMF(y0, y
∗, 1, z |x∗)

Pr(Yi = y∗ |Xi = x∗)

=
∑
y0,z

Pr(Yi(0) = y0 |Xi = x∗)
Pr(Yi = y∗, Zi = z |Xi = x∗)

Pr(Yi = y∗ |Xi = x∗)

= 1.

Since θ(f ; c) ≤ 1 and θ(f ; cy) ≤ 1 for all f ∈ F , it follows that θPMF(c) = θPMF(cy) = 1.

Now let Assumption IVx hold and, for a given probability mass function φ defined
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over {1, . . . , nY } for each x ∈ X , define the data-generating process fIV as:

fIV(y0, y1, s, z |x) =


0 if s = 0

φ(y0 |x) Pr(Yi = y1, Zi = z |Xi = x) if s = 1.

Since fIV is weakly positive, adds up to one for every x ∈ X and satisfies restrictions

(ROE) and (RIV), fIV ∈ F∗IV. Moreover, θ (fIV; c) = θ (fIV; cy) = 1, so that θIV(c) =

θIV(cy) = 1. �

Lemma 2. Define Y ≡ {1, . . . , nY } and consider the linear parameter θ(f ; cS) asso-

ciated with scalar coefficients cS , such that cS(y0, y1, s, z, x) ≡ ω(y1, x)1{s = 1} and

ω : Y ×X 7→ R. Let Γ be the set of probability mass functions defined over Y ×Y and

Φ be the set of probability mass functions defined over Y for each x ∈ X . Then

θIV(cS) ≡ min
f∈F∗IV

θ(f ; cS)

= min
φ∈Φ

∑
z∈Z,x∈X

Pr(Zi = z |Xi = x) λ(φ, z, x)

where

λ(φ, z, x) = min
γ∈Γ

∑
y0,y∈Y

ω(y, x) 1{y0 6= y} γ(y0, y) s.t.

(i)
∑
y0∈Y

γ(y0, y) = Pr(Yi = y |Zi = z,Xi = x) ∀ y

(ii)
∑
y∈Y

γ(y0, y) = φ(y0 |x) ∀ y0

Proof. The proof has two parts. In Part I, I show that θIV(cS) equals the solution to a

convenient linear program:

θIV(cS) = min
ξ∈Ξ

∑
y0,y∈Y,z∈Z,x∈X

ω(y, x) 1{y0 6= y}ξ(y0, y, z |x) subject to:

(i)
∑
y0∈Y

ξ(y0, y, z |x) = Pr(Yi = y, Zi = z |Xi = x) ∀ y, z, x

(ii)
∑
y∈Y

ξ(y0, y, z |x) = Pr(Zi = z |Xi = x)
∑

y∈Y,z′∈Z
ξ(y0, y, z

′ |x) ∀ y0, z, x,
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where Ξ is the set of probability mass functions defined over Y ×Y ×Z for each x ∈ X .

In Part II, I reformulate this linear program.

Part I

For a given ξ ∈ Ξ, let F∗ξ denote the subset of F∗IV that is consistent with ξ:

F∗ξ ≡

f ∈ F∗IV :
∑

y1∈Y,s∈{0,1}

1{sy1 + (1− s)y0 = y}f(y0, y1, s, z |x) = ξ(y0, y, z |x) ∀y0, y, z, x

 .

Clearly, F∗IV =
{
f ∈ F∗ξ : ξ ∈ Ξ

}
=
{
f ∈ F∗ξ : ξ ∈ Ξ and F∗ξ 6= ∅

}
, so that

θIV(cS) = min
ξ∈Ξ

(
min
f∈F∗ξ

θ(f ; cS)

)
subject to F∗ξ 6= ∅.

I will now show that:

F∗ξ 6= ∅ ⇐⇒


∑
y0∈Y

ξ(y0, y, z|x) = Pr(Yi = y, Zi = z |Xi = x) ∀y ∈ Y, z ∈ Z, x ∈ X

∑
y
ξ(y0, y, z|x) = Pr(Zi = z |Xi = x)

∑
y,z′

ξ(y0, y, z
′|x) ∀y0 ∈ Y, z ∈ Z, x ∈ X .

(A.4)

To prove sufficiency, suppose that F∗
ξ̂

is non-empty for some ξ̂ ∈ Ξ, and let f̂ ∈ F∗
ξ̂
.

It follows that, for all y ∈ Y, z ∈ Z,

∑
y0∈Y

ξ̂(y0, y, z|x)

=
∑

y0,y1∈Y,s∈{0,1}

1{sy1 + (1− s)y0 = y}f̂(y0, y1, s, z |x)

= Pr(Yi = y, Zi = z |Xi = x), (A.5)

where the first equality holds by the definition of F∗
ξ̂

and the fact that f̂ ∈ F∗ξ , and the

second equality holds because f̂ ∈ F∗IV, so that f̂ satisfies restriction (ROE). On the
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other hand, for every y0 ∈ Y, z ∈ Z,

∑
y∈Y

ξ̂(y0, y, z|x) =
∑

y1∈Y,s∈{0,1}

∑
y∈Y

1{sy1 + (1− s)y0 = y}f̂(y0, y1, s, z |x)

=
∑

y1∈Y,s∈{0,1}

f̂(y0, y1, s, z |x)

= Pr(Zi = z |Xi = x)
∑

y1∈Y,s∈{0,1},z′∈Z

f̂(y0, y1, s, z
′ |x)

= Pr(Zi = z |Xi = x)
∑

y∈Y,z′∈Z
ξ̂(y0, y, z

′|x), (A.6)

where I used the definition of F∗
ξ̂

and the fact that f̂ ∈ F∗ξ in the first and last equalities,

and the third equality holds because f̂ ∈ F∗IV, so that f̂ satisfies restriction (RIV).

To prove necessity, suppose that a given ξ ∈ Ξ satisfies the restrictions in the right-

hand-side of (A.16) and define fξ as:

fξ(y0, y1, s, z |x) =


1{y0 6= y1}ξ(y0, y1, z |x) if s = 1,

1{y0 = y1}ξ(y0, y1, z |x) if s = 0.

(A.7)

I will show that fξ ∈ F∗ξ . Notice first that fξ ∈ F , since ξ ∈ Ξ. In addition, fξ satisfies

(ROE): for every y ∈ Y, z ∈ Z and x ∈ X ,

∑
y0,y1,s

1
{
sy1 + (1− s)y0 = y

}
fξ(y0, y1, s, z |x)

=
∑
y0

∑
y1

(
1
{
y1 = y

}
1{y0 6= y1} ξ

(
y0, y1, z|x

)
+ 1
{
y0 = y

}
1{y0 = y1} ξ

(
y0, y1, z|x

))
=

∑
y0

ξ(y0, y, z|x)

= Pr(Yi = y, Zi = z |Xi = x),

where the last equality is shown in (A.5). Finally, fξ satisfies (RIV): for all y0 ∈ Y and
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z ∈ Z and x ∈ X ,

∑
y∈Y,s∈{0,1}

fξ(y0, y, s, z |x) =
∑

y1∈Y,s∈{0,1}

∑
y∈Y

1{sy1 + (1− s)y0 = y}fξ(y0, y1, s, z |x)

=
∑
y∈Y

ξ(y0, y, z |x)

= Pr(Zi = z |Xi = x)
∑

y∈Y,z′∈Z
ξ(y0, y, z

′ |x)

= Pr(Zi = z |Xi = x)
∑

y1∈Y,s∈{0,1},z′∈Z

fξ(y0, y1, s, z
′ |x),

where the second and last equalities follow from the definition of F∗ξ , and the third

equality is obtained from the steps shown in (A.6).

I now determine minf∈F∗ξ θ(f ; cS) for all non-empty F∗ξ . Consider a given ξ such

that F∗ξ 6= ∅ and define fξ as in (A.7). I will show that θ(fξ; c
S) = minf∈F∗ξ θ(f ; cS).

The previous discussion showed that fξ ∈ F∗ξ . For any f ∈ F∗ξ , it follows that:

θ(fξ; c
S) =

∑
y0,y,s,z,x

ω(y, x) 1{s = 1}fξ(y0, y, s, z |x)

=
∑

y0,y,z,x

ω(y, x) fξ(y0, y, 1, z |x)

=
∑

y0,y,z,x

ω(y, x) 1{y0 6= y}ξ(y0, y, z |x)

=
∑

y0,y,z,x

ω(y, x) 1{y0 6= y}
∑
y1,s

1{sy1 + (1− s)y0 = y}f(y0, y1, s, z |x)

=
∑

y0,y,z,x

ω(y, x) 1{y0 6= y}
∑
y1

1{y1 = y}f(y0, y1, 1, z |x)

=
∑

y0,y,z,x

ω(y, x) 1{y0 6= y}f(y0, y, 1, z |x)

≤
∑

y0,y,z,x

ω(y, x) f(y0, y, 1, z |x)

=
∑

y0,y,s,z,x

ω(y, x) 1{s = 1}f(y0, y, 1, z |x)

= θ(f ; cS),
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where the fourth equality follows from the fact that f ∈ F∗ξ . Hence,

θIV(cS) ≡ min
f∈F∗IV

θ(f ; cS)

= min
ξ∈Ξ

(
min
f∈F∗ξ

θ(f ; cS)
)

s.t. F∗ξ 6= ∅

= min
ξ∈Ξ

∑
y0,y∈Y,z∈Z,x∈X

ω(y, x) 1{y0 6= y} ξ(y0, y, z |x) s.t.

(i)
∑
y0∈Y

ξ(y0, y, z |x) = Pr(Yi = y, Zi = z |Xi = x) ∀ y, z, x

(ii)
∑
y∈Y

ξ(y0, y, z |x) = Pr(Zi = z |Xi = x)
∑

y∈Y,z′∈Z
ξ(y0, y, z

′ |x) ∀ y0, z, x

(A.8)

Part II

An equivalent formulation of (A.8) is:

min
φ∈Φ,ψ∈Ψ

∑
z∈Z,x∈X

Pr(Zi = z |Xi = x)
∑

y0,y∈Y
ω(y, x) 1{y0 6= y} ψ(y0, y | z, x) s.t.

(i)
∑
y0∈Y

ψ(y0, y | z, x) = Pr(Yi = y |Zi = z,Xi = x) ∀ y, z, x

(ii)
∑
y∈Y

ψ(y0, y | z, x) = φ(y0 |x) ∀ y0, z, x (A.9)

where Φ is the set of probability mass functions defined over Y for each x ∈ X and Ψ

is the set of probability mass functions defined over Y × Y for each z ∈ Z and x ∈ X .

To see that (A.8) and (A.9) are equal, let ξ∗ solve problem (A.8) and define

φξ∗(y0 |x) ≡
∑

y∈Y,z′∈Z
ξ∗(y0, y, z

′ |x) ∀y0 ∈ Y, x ∈ X

ψξ∗(y0, y | z, x) ≡ ξ∗(y0, y, z |x)

Pr(Zi = z |Xi = x)
∀y, y0 ∈ Y, x ∈ X , z ∈ Z.

φξ∗ and ψξ∗ are well-defined conditional probability mass functions and they clearly

yield the same objective. Moreover, φξ∗ and ψξ∗ are feasible in problem (A.9). Hence,

(A.9) must be weakly smaller than (A.8). Conversely, let φ∗ and ψ∗ solve problem

(A.9) and define

ξψ∗(y0, y, z |x) ≡ Pr(Zi = z |Xi = x)ψ∗(y0, y | z, x) ∀ y, y0 ∈ Y, x ∈ X , z ∈ Z.
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ξψ∗ yields the same objective value and is well-defined: it is a probability mass function

over Y × Y × Z for each x ∈ X . Moreover, ξψ∗ is feasible in problem (A.8). Hence,

(A.8) must be weakly smaller than (A.9). It follows that (A.8) and (A.9) are equal.

Finally, problem (A.9) equals

min
φ∈Φ

∑
z∈Z,x∈X

Pr(Zi = z |Xi = x) λ(φ, z, x) (A.10)

where

λ(φ, z, x) = min
γ∈Γ

∑
y0,y∈Y

ω(y, x) 1{y0 6= y} γ(y0, y) s.t.

(i)
∑
y0∈Y

γ(y0, y) = Pr(Yi = y |Zi = z,Xi = x) ∀ y

(ii)
∑
y∈Y

γ(y0, y) = φ(y0 |x) ∀ y0 (A.11)

To see this, fix some φ ∈ Φ, and let γ∗z,x solve (A.11) for each z ∈ Z and x ∈ X , given

φ. Because ψγ∗ , defined as ψ(y0, y | z, x) ≡ γ∗z,x(y0, y), is feasible in (A.9) and yields the

same objective given φ, (A.9) is weakly smaller than (A.10). Similarly, let ψ∗ solve the

(A.9) given φ, and define γz,x for all z ∈ Z and x ∈ X as γz,x(y0, y) ≡ ψ∗(y0, y | z, x). For

each (z, x), γz,x is feasible in (A.11) and
{
γz,x : z ∈ Z, x ∈ X

}
yield the same objective

value. Therefore, (A.10) is weakly smaller than (A.9). It follows that problems (A.9)

and (A.10) are equal. �

Lemma 3. Let Assumption IVx hold and let Φ be the set of probability mass functions

defined over {1, . . . , nY } for each x ∈ X . Then, given x∗ ∈ X , Pr(Si = 1 |Xi = x∗) ≥

LB(x∗) where

LB(x∗) = min
φ∈Φ

∑
y∈Y,z∈Z

1

2
Pr(Zi = z |Xi = x∗)

∣∣∣Pr(Yi = y |Xi = x∗, Zi = z) − φ(y |x∗)
∣∣∣,

and Pr(Si = 1 |Yi = y,Xi = x∗) ≥ 0. These lower bounds are sharp.

In addition, suppose that Zi is binary, so that Z = {0, 1}. Let pmin ≡ min
{

Pr(Zi =

0 |Xi = x∗),Pr(Zi = 1 |Xi = x∗)
}

. Then

LB(x∗) =
∑

y∈Y,z∈Z

pmin

2

∣∣∣Pr(Yi = y |Xi = x∗, Zi = 0) − Pr(Yi = y |Xi = x∗, Zi = 1)
∣∣∣
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Proof. Fix x∗ ∈ X . Note that, under Assumption IVx, LB(x∗) = θIV(c), where

c(y0, y1, s, z, x) = 1{x = x∗} · 1{s = 1}. By Lemma 2,

θIV(c) = min
φ∈Φ

∑
z∈Z

Pr(Zi = z |Xi = x∗) λ(φ, z, x∗) (A.12)

where

λ(φ, z, x∗) = min
γ∈Γ

∑
y0,y∈Y

1{y0 6= y} γ(y0, y) s.t. (A.13)

(i)
∑
y0∈Y

γ(y0, y) = Pr(Yi = y |Zi = z,Xi = x∗) ∀ y

(ii)
∑
y∈Y

γ(y0, y) = φ(y0 |x∗) ∀ y0

and Γ is the set of probability mass functions defined over Y × Y. Problem (A.13) is

a Monge-Kantorovich transportation (optimal transport) problem with binary costs.

With this particular cost structure, it admits a closed-form solution, given by half of

the absolute distance between the marginal distributions (see Propositions 4.7 and 4.2

of Levin and Peres (2017) for a recent textbook treatment), so that:

λ(φ, z, x∗) =
1

2

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = z,Xi = x∗)− φ(y |x∗)
∣∣∣

In conjunction with (A.12), this result gives the desired lower bound for Pr(Si = 1 |Xi =

x∗), LB(x∗).

If Zi is binary and Z = {0, 1}, then for any φ ∈ Φ,

∑
z∈Z

Pr(Zi = z |Xi = x∗) λ(φ, z, x∗)

= Pr(Zi = 0 |Xi = x∗) λ(φ, 0, x∗) + Pr(Zi = 1 |Xi = x∗) λ(φ, 1, x∗)

≥ pmin λ(φ, 0, x∗) + pmin λ(φ, 1, x∗)

=
pmin

2
·
( nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 0, Xi = x∗)− φ(y |x∗)
∣∣∣

+

nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 1, Xi = x∗)− φ(y |x∗)
∣∣∣)

≥ pmin

2
·
nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 0, Xi = x∗)− Pr(Yi = y |Zi = 1, Xi = x∗)
∣∣∣,
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where pmin ≡ min
{

Pr(Zi = 0 |Xi = x∗),Pr(Zi = 1 |Xi = x∗)
}

and the last inequality

follows from the triangle inequality, a property of the absolute (`1, Taxicab, Manhattan)

distance. But this lower bound is achieved by φ∗(·, x∗), defined as:

φ∗(y |x∗) =


Pr(Yi = y |Zi = 0, Xi = x∗) if p = Pr(Zi = 1 |Xi = x∗)

Pr(Yi = y |Zi = 1, Xi = x∗) if p = Pr(Zi = 0 |Xi = x∗)

Therefore,

LB(x∗) =
pmin

2
·
nY∑
y=1

∣∣∣Pr(Yi = y |Zi = 0, Xi = x∗)− Pr(Yi = y |Zi = 1, Xi = x∗)
∣∣∣.

On the other hand, given y∗ ∈ Y and x∗ ∈ X , the sharp lower bound for Pr(Si =

1 |Yi = y∗, Xi = x∗) is θIV(cy), where

cy(y0, y1, s, z, x) =
1{x = x∗, y1 = y∗}

Pr(Yi = y∗ |Xi = x∗)
· 1{s = 1}.

By Lemma 2,

θIV(cy) = min
φ∈Φ

∑
z∈Z

Pr(Zi = z |Xi = x∗) λ(φ, z, x∗) (A.14)

where

λ(φ, z, x∗) = min
γ∈Γ

∑
y0∈Y

1{y0 6= y∗}
Pr(Yi = y∗|Xi = x∗)

γ(y0, y
∗) s.t. (A.15)

(i)
∑
y0∈Y

γ(y0, y) = Pr(Yi = y |Zi = z,Xi = x∗) ∀ y

(ii)
∑
y∈Y

γ(y0, y) = φ(y0 |x∗) ∀ y0

The constraints in problem (A.15) imply that

∑
y0∈Y

1{y0 6= y∗}γ(y0, y
∗) −

∑
y∈Y

1{y 6= y∗}γ(y∗, y)

= Pr(Yi = y∗ |Zi = z,Xi = x∗) − φ(y∗ |x∗),

so that the optimal solution to problem A.15 is given by any feasible γ∗ such that:

∑
y0∈Y

1{y0 6= y∗}γ∗(y0, y
∗) = max

{
0, Pr(Yi = y∗ |Zi = z,Xi = x∗) − φ(y∗ |x∗)

}
,
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so that

λ(φ, z, x∗) = max

{
0,

Pr(Yi = y∗ |Zi = z,Xi = x∗) − φ(y∗ |x∗)
Pr(Yi = y∗ |Xi = x∗)

}
.

Now, define φ∗(y |x∗) = Pr(Yi = y |Zi = zmax, Xi = x∗), where zmax = arg maxz Pr(Yi =

y∗ |Zi = z,Xi = x∗). For all z ∈ Z, it follows that

Pr(Yi = y∗ |Zi = z,Xi = x∗) − φ(y∗ |x∗) ≤ 0.

Thus, λ(φ∗, z, x∗) = 0 for all z, and θIV(cy) = 0. �

Lemma 4. Suppose that Zi is degenerate and define Y ≡ {1, . . . , nY }. Consider the lin-

ear parameter θ(f ; cS) associated with scalar coefficients cS , such that cS(y0, y1, s, z, x) ≡

ω(y1, x)1{s = 1} and ω : Y × X 7→ R. Then

θPMF(cS) ≡ min
f∈F∗PMF

θ(f ; cS)

= min
γ∈Γ

∑
y0,y∈Y,x∈X

ω(y, x) 1{y0 6= y}γ(y0, y |x) subject to:

(i)
∑
y0∈Y

γ(y0, y |x) = Pr(Yi = y |Xi = x) ∀ y, x

(ii)
∑
y∈Y

γ(y0, y |x) = Pr(Yi(0) = y |Xi = x) ∀ y0, x

Proof. The proof is analogous to that of Lemma 2. In this proof, I simply show the

main steps to avoid repetition.

For a given γ ∈ Γ, let F∗γ denote the subset of F∗PMF that is consistent with γ:

F∗γ ≡

f ∈ F∗PMF :
∑

y1∈Y,s∈{0,1}

1{sy1 + (1− s)y0 = y}f(y0, y1, s |x) = γ(y0, y |x) ∀y0, y, x

 .

Thus,

θPMF(cS) = min
γ∈Γ

(
min
f∈F∗γ

θ(f ; cS)

)
subject to F∗γ 6= ∅.

Moreover,

F∗γ 6= ∅ ⇐⇒


∑
y0∈Y

γ(y0, y|x) = Pr(Yi = y |Xi = x) ∀y ∈ Y, x ∈ X

∑
y
γ(y0, y|x) = Pr(Yi(0) = y |Xi = x) ∀y0 ∈ Y, x ∈ X .

(A.16)
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On the other hand,

θ(fγ ; cS) = min
f∈F∗γ

θ(f ; cS),

where

fγ(y0, y1, s |x) =


1{y0 6= y1}γ(y0, y1 |x) if s = 1,

1{y0 = y1}γ(y0, y1 |x) if s = 0.

(A.17)

We therefore conclude that:

θPMF(cS) = min
γ∈Γ

∑
y0,y∈Y,x∈X

ω(y, x) 1{y0 6= y}γ(y0, y |x) subject to:

(i)
∑
y0∈Y

γ(y0, y |x) = Pr(Yi = y |Xi = x) ∀ y, x

(ii)
∑
y∈Y

γ(y0, y |x) = Pr(Yi(0) = y |Xi = x) ∀ y0, x.

�

Lemma 5. Let Assumption PMFx hold and suppose that Zi is degenerate. Then,

given x∗ ∈ X , the sharp lower bound for Pr(Si = 1 |Xi = x∗) equals

∑
y∈Y

1

2

∣∣∣Pr(Yi = y |Xi = x∗) − Pr(Yi(0) = y |Xi = x∗)
∣∣∣.

On the other hand, the sharp lower bound for Pr(Si = 1 |Yi = y,Xi = x∗) equals

max

{
0,

Pr(Yi = y∗ |Xi = x∗) − Pr(Yi(0) = y∗ |Xi = x∗)

Pr(Yi = y∗ |Xi = x∗)

}
.

Proof. Fix x∗ ∈ X . Note that, under Assumption PMFx, the sharp lower bound for

Pr(Si = 1 |Xi = x∗) is θPMF(c), where c(y0, y1, s, z, x) = 1{x = x∗} · 1{s = 1}. By

Lemma 4,

θPMF(c) = min
γ∈Γ

∑
y0,y∈Y

1{y0 6= y} γ(y0, y) s.t. (A.18)

(i)
∑
y0∈Y

γ(y0, y) = Pr(Yi = y |Xi = x∗) ∀ y

(ii)
∑
y∈Y

γ(y0, y) = Pr(Yi(0) = y0 |Xi = x∗) ∀ y0
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where Γ is the set of probability mass functions defined over Y × Y. Like problem

(A.13) in Lemma 3, Problem (A.18) is an optimal transport problem with binary costs

and a well-known solution:

θPMF(c) =
∑
y∈Y

1

2

∣∣∣Pr(Yi = y |Xi = x∗) − Pr(Yi(0) = y |Xi = x∗)
∣∣∣.

On the other hand, given y∗ ∈ Y and x∗ ∈ X , the sharp lower bound for Pr(Si =

1 |Yi = y∗, Xi = x∗) is θPMF(cy), where

cy(y0, y1, s, z, x) =
1{x = x∗, y1 = y∗}

Pr(Yi = y∗ |Xi = x∗)
· 1{s = 1}.

By Lemma 4,

θPMF(cy) = min
γ∈Γ

∑
y0∈Y

1{y0 6= y∗}
Pr(Yi = y∗|Xi = x∗)

γ(y0, y
∗) s.t.

(i)
∑
y0∈Y

γ(y0, y) = Pr(Yi = y |Xi = x∗) ∀ y

(ii)
∑
y∈Y

γ(y0, y) = Pr(Yi(0) = y0 |Xi = x∗) ∀ y0.

Now, notice that the constraints in this problem imply that

∑
y0∈Y

1{y0 6= y∗}γ(y0, y
∗) −

∑
y∈Y

1{y 6= y∗}γ(y∗, y)

= Pr(Yi = y∗ |Xi = x∗) − Pr(Yi(0) = y∗ |Xi = x∗).

Thus, the optimal objective is attained by any feasible γ∗ that satisfies:

∑
y0∈Y

1{y0 6= y∗}γ∗(y0, y
∗) = max

{
0, Pr(Yi = y∗ |Xi = x∗) − Pr(Yi(0) = y∗ |Xi = x∗)

}
,

so that

θPMF(cy) = max

{
0,

Pr(Yi = y∗ |Xi = x∗)− Pr(Yi(0) = y∗ |Xi = x∗)

Pr(Yi = y∗ |Xi = x∗)

}
.

�
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