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Abstract

A principal can contract with one of several agents based on observed output. If she

did not hire anyone, she would take a baseline action that is also available to agents and

produces some output. Agents know what happens under the baseline action, but the

principal does not. In addition, the principal ignores what other actions are available to

agents. In this situation, simply giving a contract away for free can make the principal

worse off. To avoid this, she auctions off the contract. She cannot pinpoint what agents

know about their contract values and evaluates contract and auction pairs according

to her payoff in worst-case scenarios. We find that a first-price auction of a full-benefit

contract, which pays all of the realized output, is optimal with a payoff guarantee of

zero. Any other contract can make the principal worse off, no matter how she sells it.

These findings guide those who want to outsource efforts towards improving observable

outcomes but face nontrivial opportunity costs of contracting and uncertainty that is

hard to quantify.

Consider a principal who thinks about hiring an agent to produce output. Hiring may or

may not be a good idea, depending on what the principal would do in the baseline — if she

did not hire anyone. The principal’s baseline action is typically assumed to be costless and

produce the lowest possible output, zero (Carroll 2015). Here, contracting is a safe business

for her. In particular, any output-sharing agreement is surely beneficial. The agent might

produce something, in which case the principal is better off, or he might produce nothing, in

which case the principal is as well off as if she did not hire anyone.

An opposite conclusion arises if the principal’s baseline action produces some output.

Here, any contract can make her worse off. We can see this in the following example. Say

the principal leads an environmental organization and wishes to hire an agent to preserve

a section of rainforest spanning 100 acres. If she did not hire an agent, she would turn

to other matters, and some rainforest — say 40 acres — would still survive by the end of
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the year. Now consider any contract that pays according to the preserved acreage. The

principal ignores what the agent can and cannot do to preserve, and it might be optimal for

a contracted agent to follow the principal’s baseline action, do nothing, and get paid for the

40 preserved acres. This situation harms the principal because she has to pay for an outcome

that would have happened anyway.

To complicate matters, our principal is uncertain about the preserved acreage under the

baseline action. How could she hire an agent and never be worse off? The key is to have

agents somehow reimburse her for the contract payment under the baseline action. The

principal’s baseline action is available to all agents. Hence, every agent is willing to pay at

least the contract payment under the baseline action to own the contract. Our principal

exploits this insight by having agents compete for the contract in an auction.

In our model, the principal knows that the baseline action is available to agents but ignores

what other actions are also available. In addition, she ignores what agents know about each

others’ contract values and cannot select a bidding equilibrium. To select a contract and

an auction in this environment, she adopts a maxmin criterion and evaluates contract and

auction pairs according to their worst-possible payoff.

Our main finding is that it is optimal for the principal to sell a full-benefit contract, which

pays all of the realized output, with a first-price auction. This contract and auction pair gives

the principal a payoff guarantee of zero. The result holds across various extensions of the

model in which we allow the principal to have more knowledge about the baseline action and

about the set of actions available to agents. The full-benefit contract is uniquely optimal:

any other contract can harm the principal, no matter how she sells it. However, we do not

show that the first-price auction is uniquely optimal. In principle, any auction whose revenue

exceeds the lowest possible valuation of agents across information structures consistent with

a common prior and equilibria also produces a payoff guarantee of zero when paired with the

full-benefit contract. The first-price auction satisfies this property by virtue of its revenue

guarantee, characterized by Bergemann, Brooks, and Morris (2017).

The intuition for our main finding is simple. Under the full-benefit contract, the principal

surrenders her entire benefit from the realized outcome to the agent. Her payoff then boils

down to the auction’s revenue net of her opportunity cost of allocating the contract, which

is her payoff under the baseline action. Agents’ valuations for the full-benefit contract are

bounded below by their payoff under the baseline action. But this payoff exactly equals the

principal’s opportunity cost of allocating the contract. With a first-price auction, revenue

weakly exceeds this quantity, so the principal is weakly better off.

The contribution of this paper is twofold. First, our main finding guides parties who wish

to outsource efforts towards improving an observable outcome but face nontrivial opportunity

costs of contracting and uncertainty that is hard to quantify. Second, our model provides a
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framework to simultaneously address designer uncertainty to players’ actions and uncertainty

to players’ information in a non-bayesian fashion. We define type spaces to include both a

common prior information structure that specifies a hierarchy of agent beliefs about their

values of the contract as well as a specification of the counterfactual outcomes that agents

would produce under contract and that the principal would produce if she did not hire anyone.

Formally, our principal considers a class of contract-specific type spaces and judges contract

and auction pairs according to her payoff in the worst possible type space.

This paper joins the literature on robust mechanism design, where the designer evaluates

alternative mechanisms according to their worst-case performance (see Carroll 2019 for a

review). We depart from the contracting setting of Carroll (2015) by allowing the principal’s

baseline action to produce output beyond its lowest possible level, normalized to zero. The

literature that studies properties of auctions across classes of common prior information

structures is closely related to this paper (Bergemann, Brooks, and Morris 2020, Brooks

and Du 2021). In particular, Bergemann, Brooks, and Morris (2017) is our stepping stone

to establish the optimality of the first-price auction. Another related literature studies the

design and implementation of Advance Market Commitments — contracts that pay a fixed

price to anyone who delivers a unit of a good or service that may not exist yet (Kremer and

Glennerster 2004, Kremer, Levin, and Snyder 2020, Kremer, Levin, and Snyder 2022).

We present the basic model in section 1. Section 2 presents our main results, and section

3 extends the model in a number of directions. Section 4 concludes.
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1 Model

We consider a principal who is risk-neutral and values an outcome that belongs to the interval

[0, y], where y > 0. We can interpret the outcome as output or as the principal’s monetary

benefit from an observable outcome. n ≥ 2 agents are available to improve the outcome, and

the principal’s problem is to hire and motivate one agent. She does so by issuing a contract

and allocating it to one agent through an auction. An agent who values the contract at v ∈ R
has preferences over probabilities of receiving the contract qi ∈ [0, 1] and auction transfers

ti ∈ R given by vqi − ti.

1.1 Contracts and Auctions

A contract is a continuous function w : [0, y] 7→ [0,∞) that requires the principal to pay

the contract holder w(y) ≥ 0 dollars if the realized outcome is y. An auction is a tuple

a = (M, q, t), where M is a set of messages available to agents, q : Mn 7→ [0, 1]n is the

allocation rule, and t : Mn 7→ Rn is the transfer rule.1 Given a profile of messages m =

(m1, . . . ,mn) ∈ Mn, qi(m) is the probability that i ∈ {1, . . . , n} gets the contract and ti(m)

is the dollar amount that i owes the principal.

Our auctions allocate the good with certainty, so
∑n

i=1 qi(m) = 1 for all profiles of mes-

sages m. We consider auctions that may not allocate the contract in section 3. Moreover,

agents can send a message 0 ∈ M that ensures a weakly negative transfer: ti(0,m−i) ≤ 0

for all i ∈ {1, . . . , n} and for all messages of agents other than i, m−i ∈ Mn−1. Agents’

contract valuations will be non-negative, so this condition implies that our auctions satisfy

participation security (Brooks and Du 2021).

1.2 Contract Valuations

We summarize what agents know about their values of a contract with a Harsanyi type space,

which includes a set S of signals, a joint distribution over profiles of signal ψ ∈ ∆(Sn) and a

value function v̂i : Sn 7→ R for each agent i ∈ {1, . . . , n}. v̂i(s) is the expected value of the

contract to agent i, conditional on the profile of signals s = (s1, . . . , sn) ∈ Sn.

1I have to endow set M with a σ-algebra so I can define strategies later on and take integrals. Bergemann,
Brooks, and Morris (2017) do it like this (copy-pasted): All sets considered in this paper are regarded as
topological spaces with their standard topologies, wherever applicable, and endowed with the Borel σ-algebra.
For a topological space X , ∆(X ) denotes the set of Borel probability measures on X , endowed with the weak-∗

topology. For a measure µ ∈ ∆(X ) and a measurable function f : X 7→ R, we denote the integral of f with
respect to µ by

∫
X f(x)µ(dx).
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1.3 Actions of Agents and of the Principal

We do not explicitly discuss the decisions of agents under contract. Instead, we specify what

agents would accomplish under contract and what the principal would accomplish if she did

not hire anyone.

Conditional on signal profile s ∈ Sn, agent i would produce an expected outcome ŷi(s) ∈
[0, y] if she received the contract and would earn an expected pay equal to ŵi(s) ≥ 0. If the

principal did not hire an agent, she would take a prespecified baseline action. Conditional

on a signal profile s ∈ Sn, the baseline action produces an expected outcome ŷb(s) ∈ [0, y]

at an expected cost of ĉb(s) ≥ 0. This action is also available to agents. An agent who takes

the baseline action earns an expected contract payment equal to ŵb(s) ≥ 0, conditional on

s ∈ Sn.

1.4 Type Spaces

We can now complete our definition of a type space: it is a tuple T = (S, ψ, v̂, ŷ, ŵ, ĉb), where
v̂ = (v̂1, . . . , v̂n), ŷ = (ŷb, ŷ1, . . . , ŷn) and ŵ = (ŵb, ŵ1, . . . , ŵn).

A type space T is consistent with contract w if for every profile of signals s ∈ Sn, there

are probability distributions Fb, F1, . . . , Fn ∈ ∆([0, y]) such that

ŷb(s) =

∫ y

0

yFb(dy), ŵb(s) =

∫ y

0

w(y)Fb(dy) and

ŷi(s) =

∫ y

0

yFi(dy), ŵi(s) =

∫ y

0

w(y)Fi(dy) for all i ∈ {1, . . . , n}, (1)

that is, if expected outcomes and contract payments belong to the convex hull of the graph

of contract w.

Our type spaces satisfy three conditions. First, it is costly for agents to act, so that

ŵi(s) ≥ v̂i(s) for all i and s ∈ Sn. (2)

Second, agents can follow the principal’s baseline action and may also take a costless action.

Since contracts are non-negative, this means that

v̂i(s) ≥ max{0, ŵb(s)− ĉb(s)} for all i and s ∈ Sn. (3)

Finally, the baseline action is beneficial to the principal, meaning that∫
Sn

[ŷb(s)− ĉb(s)]ψ(ds) ≥ 0. (4)
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The set of admissible type spaces for contract w is then

Tw = {T : T satisfies (1), (2), (3) and (4)}.

The following property of type spaces will be central to our analysis. A type space T

features common baseline knowledge if the consequences of the baseline action are common

knowledge among agents:2

ŷb(s) = ŷb(s
′), ĉb(s) = ĉb(s

′) and ŵb(s) = ŵb(s
′) for all s, s′ ∈ Sn. (5)

1.5 Bidding Behavior

An auction a and a type space T specify a game of incomplete information among agents. A

strategy for agent i is a mapping σi : S 7→ ∆(M) that associates a probability distribution

over messages to each signal observation. Given a profile of strategies σ = (σ1, . . . , σn), agent

i’s ex-ante expected utility is

ui(σ |T, a) =
∫
Sn

∫
Mn

[qi(m)v̂i(s)− ti(m)]σ1(dm1|s1) · · ·σn(dmn|sn)ψ(ds).

A Bayes Nash equilibrium is a profile of strategies σ such that ui(σ) ≥ ui(σ
′
i, σ−i) for every

agent i and strategy σ′
i, where σ−i is the profile of strategies of agents other than i. The set

of Bayes Nash equilibria is Σ(T, a).

1.6 Timing

First, the principal selects a contract and an auction format and announces them. Agents

privately observe their signal realizations and participate in the auction. After they bid,

the contract is allocated, and the auction transfers are determined. Then, the contracted

agent acts. Finally, the outcome occurs, and all transactions take place. Agents pay the

principal according to their auction messages and the transfer rule, and the principal pays

the contracted agent according to the realized outcome and the contract.

In this sequence of events, agents delay their auction transfers to the principal until after

the outcome occurs instead of paying immediately after the auction. This choice of timing

allows us to ignore individual attitudes towards payments made at the end of the auction

and those made after the outcome occurs.

2In general, baseline outcomes, costs, and contract payments could depend on a signal component that
is common knowledge among agents. Here, we proceed as if agents have already observed the realization of
this common signal.
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1.7 Objective of the Principal

For a given auction a, the principal’s expected payoff at type space T and profile of strategies

σ is Π(T, σ | a), given by

Π(T, σ | a) =
∫
Sn

∫
Mn

n∑
i=1

(
qi(m)

[
ŷi(s)− ŵi(s)

]
+ ti(m)

)
σ1(dm1|s1) · · ·σn(dmn|sn)ψ(ds)

−
∫
Sn

[
ŷb(s)− ĉb(s)

]
ψ(ds)

=

∫
Sn

∫
Mn

n∑
i=1

(
qi(m)

[
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

]
+ ti(m)

)
σ(dm|s)ψ(ds), (6)

where σ(dm|s) = σ1(dm1|s1) · · ·σn(dmn|sn).
The principal is uncertain about both the type space and the strategies that agents would

follow at any given auction and type space. Given contract w, she knows that the type space

belongs to the subset of admissible type spaces that feature common baseline knowledge

T ∗
w = {T ∈ Tw : T satisfies (5)}.

She also knows that agents follow Bayes Nash equilibrium strategies at any given auction

and type space.

That said, she does not rely on a prior on the set of possible type spaces and equilibria,

{(T, σ) : T ∈ T ∗
w , σ ∈ Σ(T, a)}, to evaluate contract w and auction a. Instead, she evaluates

a contract w and an auction a with the payoff guarantee Π(w, a), which is the worst-possible

expected payoff she could obtain by looking across possible type spaces and equilibria:

Π(w, a) = inf
{
Π(T, σ | a) : T ∈ T ∗

w and σ ∈ Σ(T, a)
}

if the infimum exists. Otherwise, Π(w, a) ≡ −∞.

We now turn to our central task, which is to find contracts and auctions that maximize

the principal’s payoff guarantee.
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2 Analysis

This section discusses our main result, which is that a first-price auction of a full-benefit

contract is optimal for a principal who knows that agents have common baseline knowledge.

In the first-price auction, messages are non-negative bids, M = [0,∞); the principal allocates

the contract among those who bid the most, mi < max{m1, . . . ,mn} implies that qi(m) = 0;

and her revenue equals the highest bid, t1(m) + · · ·+ tn(m) = max{m1, . . . ,mn}. In turn, a

full-benefit contract w satisfies w(y) = y + k, k ≥ 0, for all y ∈ [0, y].

Theorem 1. It is optimal for the principal to sell any full-benefit contract with a first-price

auction.

To prove this result, we first argue that the principal can be weakly worse off from any

contract and auction pair due to the possibility that agents optimally want to mimic the

principal’s baseline action. Then, we argue that the principal must be weakly better off

from a first-price auction of a full-benefit contract. The first-price auction emerges because

its revenue guarantee, characterized by Bergemann, Brooks, and Morris (2017), exceeds

the lowest possible valuation consistent with a common prior. The full-benefit contract

w(y) = y is special because it reduces the principal’s payoff to the auction’s revenue net of

her opportunity cost of contracting, which is her net benefit of the baseline action. When

agents have common baseline knowledge, they know that their values of the full-benefit

contract exceed this opportunity cost. So, if the principal sells such a contract with a first-

price auction, she cannot be worse off. When the contract also includes a lump sum transfer,

so that w(y) = y + k with k > 0, the argument is virtually unchanged: agents’ contract

valuations increase by k, and they transfer k back to the principal when they bid in the

first-price auction.

Lemma 1. For every contract w, there exists a type space T ∈ T ∗
w such that Π(T, σ | a) ≤ 0

for every auction a and equilibrium σ ∈ Σ(T, a).

Proof. Fix yb ∈ [0, y], wb = w(yb) and cb satisfying 0 ≤ cb ≤ min{yb, wb}. At type space T ,

agents mimic the baseline action: for every agent i ∈ {1, . . . , n} and signal profile s ∈ Sn,

ŷi(s) = ŷb(s) = yb, ŵi(s) = ŵb(s) = wb, ĉb(s) = cb, and v̂i(s) = wb − cb.

We can see that T satisfies conditions (1) through (5), so T ∈ T ∗
w . T is bad for the

principal because it implies a zero-sum game between her and the agents: for any auction a
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and every profile of strategies σ,

Π(T, σ | a) =
∫
Sn

∫
Rn
+

n∑
i=1

[
qi(m)

(
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

)
+ ti(m)

]
σ(dm|s)ψ(ds)

=

∫
Sn

∫
Rn
+

n∑
i=1

−
(
qi(m)v̂(s)− ti(m)

)
σ(dm|s)ψ(ds)

= −
n∑

i=1

ui(σ |T, a).

Agents may always send message 0 ∈ M and obtain a non-negative payoff. In an equilibrium

σ ∈ Σ(T, a), we conclude that Π(T, σ | a) ≤ 0. ■

Lemma 1 shows that the payoff guarantee of any contract and auction pair is weakly

negative. We shall now see that the principal must be weakly better off under certain

auctions of a full-benefit contract.

We say that an auction a = (M, q, t) has a value-guaranteed revenue if agents’ valuations

bound equilibrium revenues: for every contract w and type space T ∈ Tw,σ ∈ Σ(T, a) and

v̂i(s) ≥ x for all i and s ∈ Sn
implies

∫
Sn

∫
Mn

( n∑
i=1

ti(m)

)
σ(dm|s)ψ(ds) ≥ x.

Our next result is that the principal cannot be worse off if she sells a full-benefit contract

with an auction that has a value-guaranteed revenue.

Lemma 2. Consider a contract w(y) = y + k with k ≥ 0 and let auction a have a value-

guaranteed revenue. For every type space T ∈ T ∗
w and equilibrium σ ∈ Σ(T, a), Π(T, σ | a) ≥

0.

Proof. Fix a type space T ∈ T ∗
w . T satisfies (5), so there are yb ∈ [0, y] and cb ≥ 0 such that

ŷb(s) = yb and ĉb(s) = cb for all s ∈ Sn. Moreover, T is consistent with contract w so that

ŵi(s) = ŷi(s) + k and ŵb(s) = yb + k for all i ∈ {1, . . . , n} and s ∈ Sn. For any profile of

strategies σ, it follows that

Π(T, σ |w, a) =
∫
Sn

∫
Mn

n∑
i=1

(
qi(m)

[
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

]
+ ti(m)

)
σ(dm|s)ψ(ds)

=

∫
Sn

∫
Mn

( n∑
i=1

ti(m)

)
σ(dm|s)ψ(ds)− (yb + k − cb).
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Now, T satisfies (3), meaning that v̂i(s) ≥ ŵb(s) − ĉb(s) = yb − cb + k for all i and s ∈ Sn.

Since auction a has a value-guaranteed revenue, we conclude that Π(T, σ | a) ≥ 0 for every

equilibrium σ. ■

Taken together, Lemmas 1 and 2 imply that selling a full-benefit contract with an auction

that has a value-guaranteed revenue yields the best payoff guarantee, which is zero. But is

there an auction that satisfies this property?

The second-price (Vickrey) auction does not. If agents’ values of the contract are private,

it is a weakly dominant strategy for them to bid their value.3 If agents followed this strategy,

the auction’s revenue would naturally exceed any lower bound on agents’ valuations. Unfor-

tunately, this conclusion is fragile. As is well-known, even with private values, the second

price auction features bidding ring equilibria where one agent bids an astronomical amount,

others bid below any possible value they might hold, and revenue is below any possible valua-

tion. We can also find low revenues if we look past private values. For example, when agents

have a common value of the contract and one agent is better informed about the value than

others (Engelbrecht-Wiggans, Milgrom, and Weber 1983, Bergemann, Brooks, and Morris

2019).

Bergemann, Brooks, and Morris (2017) showed that, in contrast with the second-price

auction, revenue in the first-price auction cannot be too low. We can use their results to

show that it has a value-guaranteed revenue.

Lemma 3. The first-price auction has a value-guaranteed revenue.

Proof. Fix a contract w and consider a type space T ∈ Tw. Let x ∈ R be such that v̂i(s) ≥ x

for all i and s ∈ Sn and define v ≡ max{0, x}. T satisfies (3) so that values are non-

negative and v̂i(s) ≥ v for all i and s ∈ Sn. w is a continuous function, so we can set

v = maxy∈[0,y]w(y). It follows that v̂i(s) ∈ [v, v] ⊆ [0,∞) for all i and s, so agents’ valuations

are consistent with a common prior µ ∈ ∆([v, v]n).

By definition, the first-price auction’s equilibrium revenue at type space T must exceed

its revenue guarantee R at the common prior µ, which was shown by Bergemann, Brooks,

and Morris (2017) to be:

R =

v∫
v

β(x)Q(dx),

where Q is the cumulative distribution function of the average of the n − 1 lowest values

implied by µ and β is the minimum winning bid function. Specifically, Q : [v, v] 7→ [0, 1] is

3Formally, type space T features private values if for every agent i and profile of signals s = (s1, . . . , sn) ∈
Sn, v̂i(s) = v̂i(si). That is, the information of others does not influence an agent’s contract value.
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given by

Q(x) = µ
(
{v ∈ [v, v]n : α(v) ≤ x}

)
,

where

α(v) =
1

n− 1

(
n∑

i=1

vi −max{v1, . . . , vn}

)
.

The minimum winning bid function β satisfies

β(z) =

z∫
v

x
Q(n−1)/n(dx)

Q(n−1)/n(z)

for all z ∈ [v, v]. Given any such z, Fz : [v, z] 7→ [0, 1] given by Fz(x) ≡ Q(n−1)/n(x)/Q(n−1)/n(z)

is a cumulative distribution function. Therefore, β(z) is the expectation of a random variable

distributed according to Fz on the interval [v, z]. It follows that β(z) ≥ v and we conclude

that for any equilibrium σ ∈ Σ(T, a),

∫
Sn

∫
Mn

( n∑
i=1

ti(m)

)
σ(dm|s)ψ(ds) ≥ R =

v∫
v

β(x)Q(dx) ≥
v∫

v

vQ(dx) = v ≥ x.

■

Lemmas 1, 2 and 3 prove Theorem 1. The first-price auction is optimal in that it has

a value-guaranteed revenue. It is not uniquely optimal because the principal could achieve

the best payoff guarantee by selling a full-benefit contract with any other auction with a

value-guaranteed revenue.

We now turn our attention to the contract. Could other contracts also be optimal with

an appropriate auction pairing? The answer is negative.

Proposition 1. Consider a contract w such that w(y1)− w(y0) ̸= y1 − y0 for some y0, y1 ∈
[0, y]. For every auction a, there exists a type space T ∈ T ∗

w such that Π(T, σ | a) < 0 for

every equilibrium σ ∈ Σ(T, a).

Proof. Take y0 < y1 and consider two cases.

Case 1 Suppose that w(y1) − w(y0) < y1 − y0. The type space we construct is such that

agents prefer to produce the smaller outcome y0, whereas the baseline action would produce

outcome y1. Moreover, the principal is better off under the baseline action even if she did not

have to make a contract payment for the smaller outcome y0. This means that contracting

makes her worse off even if she can fully extract agents’ values.
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That is, ŷi(s) = y0, ŵi(s) = w(y0) = v̂i(s), ŷb(s) = y1 and ŵb(s) = w(y1) for all i ∈
{1, . . . , n} and s ∈ Sn. Moreover, ĉb(s) = c ∈

[
max{0, w(y1) − w(y0)}, y1 − y0

)
for all

s ∈ Sn. Clearly, T satisfies (1) through (5), so that T ∈ T ∗
w . Now fix an auction a and an

equilibrium σ ∈ Σ(T, a). It follows that

Π(T, σ | a) =
∫
Sn

∫
Mn

n∑
i=1

(
qi(m)

[
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

]
+ ti(m)

)
σ(dm|s)ψ(ds)

= y0 − w(y0)− (y1 − c) +

∫
Sn

∫
Mn

n∑
i=1

ti(m)σ(dm|s)ψ(ds)

≤ y0 − w(y0)− (y1 − c) +

∫
Sn

∫
Mn

n∑
i=1

qi(m)v̂i(s)σ(dm|s)ψ(ds)

= (y1 − c)− y0

< 0,

where the weak inequality follows from the fact that agents have a non-negative surplus in

equilibrium.

Case 2 Now suppose that y1 − y0 < w(y1)− w(y0). Here, we construct a type space such

that agents produce the larger outcome y1 and the baseline action produces y0. Agents’ costs

of producing y1 drive down their contract values to the point where any auction’s revenue

cannot compensate the principal for the relatively large contract payment, making her worse

off.

Let T be such that ŷi(s) = y1, ŵi(s) = w(y1), ŷb(s) = y0 and ŵb(s) = w(y0) for all

i ∈ {1, . . . , n} and s ∈ Sn. The baseline action is costless, so ĉb(s) = 0 for all s. Moreover,

agents’ values satisfy v̂i(s) = w(y1) − c for all i and s, where c ∈ (y1 − y0, w(y1) − w(y0)].

Once again, T satisfies (1) through (5), so that T ∈ T ∗
w . For any auction a and equilibrium
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σ ∈ Σ(T, a), we have that

Π(T, σ | a) =
∫
Sn

∫
Mn

n∑
i=1

(
qi(m)

[
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

]
+ ti(m)

)
σ(dm|s)ψ(ds)

= y1 − w(y1)− y0 +

∫
Sn

∫
Mn

n∑
i=1

ti(m)σ(dm|s)ψ(ds)

≤ y1 − w(y1)− y0 +

∫
Sn

∫
Mn

n∑
i=1

qi(m)v̂i(s)σ(dm|s)ψ(ds)

= [y1 − w(y1)] + [w(y1)− c]− y0

< 0.

The weak inequality follows again from the fact that agents have a non-negative surplus in

equilibrium. ■

Up to now, we have assumed that type spaces feature common baseline knowledge, mean-

ing that the consequences of the baseline action are common knowledge among agents. If we

drop this assumption, it turns out that any contract and auction pair can make the principal

worse off.

Proposition 2. For every contract w, there exists a type space T ∈ Tw such that Π(T, σ | a) <
0 for any auction a and equilibrium σ ∈ Σ(T, a).

Proof. By Proposition 1, we need only consider a full-benefit contract satisfying w(y) = y+k

for all y ∈ [0, y], with k ≥ 0. In our type space T , agents mimic the principal’s baseline

action, which is costless. That is, ŷi(s) = ŷb(s), ĉb(s) = 0, ŵi(s) = ŵb(s) = ŷb(s) + k and

v̂i(s) = v̂(s) = ŷb(s) + k for every i ∈ {1, . . . , n} and s ∈ Sn. T satisfies (1) through (4), so

that T ∈ Tw. At T , agents have a common value of contract w. Furthermore, T implies a

zero-sum game between the principal and the agents: for any auction a and every profile of

strategies σ,

Π(T, σ | a) =
∫
Sn

∫
Rn
+

n∑
i=1

[
qi(m)

(
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

)
+ ti(m)

]
σ(dm|s)ψ(ds)

=

∫
Sn

∫
Rn
+

n∑
i=1

−
(
qi(m)v̂(s)− ti(m)

)
σ(dm|s)ψ(ds)

= −
n∑

i=1

ui(σ |T, a).

13



We will further specify T so that agents obtain a strictly positive surplus in every auction a

and equilibrium σ ∈ Σ(T, a).

Consider the maximum signal model of Bulow and Klemperer (2002). The highest signal

reveals the value of the contract: v̂(s1, . . . , sn) = max{s1, . . . , sn} and signals are independent

draws from a uniform distribution with support equal to [k, y+k]. In this model, Bergemann,

Brooks, and Morris (2020) show (Theorem 3) that an upper bound on revenue across auctions

and equilibria is

R ≡
y+k∫
k

ϕ(v)g(v)dv,

where

ϕ(v) = v −
y+k∫
v

y − (x− k)

x− k
dx

is interpreted as a virtual value and g is the probability density function of the maximum

signal, g(v) = n(v − k)n−1/yn. In this model, the principal is unable to extract the entire

bidders’ surplus, regardless of the auction format and equilibrium thereof:

y+k∫
k

vg(v)dv −R =

y+k∫
k

y+k∫
v

y − (x− k)

x− k
dxg(v)dv > 0.

Therefore,
∑n

i=1 ui(σ |T, a) > 0 and Π(T, σ | a) < 0 for every auction a and equilibrium

σ ∈ Σ(T, a). ■
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3 Extensions

Section 2 discusses the contract and auction design problem of a principal who is quite

ignorant. She knows that agents can also take the baseline action and that its consequences

are common knowledge among them. However, she ignores these consequences; she ignores

what other actions are available to them; and she ignores what they know about each others’

contract values. Moreover, section 2 restricts attention to auctions that allocate the contract

with certainty.

In this section, we ask what happens when the principal can also choose auctions that

may not allocate the contract; when she knows more about her payoff under the baseline

action; and when she knows about other actions that are available to agents.

3.1 Can-Keep Auctions

Our model excludes auctions that may not allocate the contract, like auctions where the

principal sets a reserve price under which she keeps the contract and takes the baseline

action. In a can-keep auction, the allocation rule q satisfies

n∑
i=1

qi(m) ≤ 1

for all message profiles m ∈ Mn. Note that, given a can-keep auction a the principal’s

expected payoff at type space T and strategies σ is still given by (6):

Π(T, σ | a) =
∫
Sn

∫
Mn

n∑
i=1

(
qi(m)

[
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

]
+ ti(m)

)
σ(dm|s)ψ(ds).

Could the principal benefit from this added flexibility? Not really: the argument in

Lemma 1, which establishes that the principal can be weakly worse off from any contract

and auction pair, does not rely on auctions allocating the contract with certainty. We record

this as a corollary.

Corollary 1. For every contract w, there exists a type space T ∈ T ∗
w such that Π(T, σ | a) ≤ 0

for every can-keep auction a and equilibrium σ ∈ Σ(T, a).

Proof. Identical to that of Lemma 1. ■

This result implies that the payoff guarantee from any contract and auction pair is

bounded above by zero so that it continues to be optimal for the principal to sell a full-

benefit contract with a first-price auction.
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3.2 Known Baseline Action

In this section, we allow the principal to know the consequences of the baseline action.

This knowledge enlarges the set of optimal contracts and auctions. It affords the principal

flexibility to sell any output-sharing agreement through an auction with a reserve price set

to her payoff under the baseline action, i.e., her opportunity cost of contracting. However, it

does not allow the principal to improve her payoff guarantee: optimal contract and auction

pairs continue to have a payoff guarantee of zero. This is true because it may still be optimal

for agents to mimic the baseline action or otherwise produce small outcomes, meaning that a

version of Lemma 1 still applies. In particular, a first-price auction of a full-benefit contract

continues to be optimal.

Formally, an action involves a probability distribution Fb ∈ ∆([0, y]) and a cost cb ≥ 0

(Carroll 2015). A type space T is consistent with (Fb, cb) if∫
Sn

ŷb(s)ψ(ds) =

∫ y

0

yFb(dy),∫
Sn

ŵb(s)ψ(ds) =

∫ y

0

w(y)Fb(dy), and∫
Sn

ĉb(s)ψ(ds) = cb. (7)

Given contract w, the principal now restricts attention to type spaces in T ∗
w (Fb, cb), where

T ∗
w (Fb, cb) = {T ∈ T ∗

w : T satisfies (7)}.

In a type space T ∈ T ∗
w (Fb, cb), the expected baseline outcome, cost, and contract payments

are common knowledge among agents as well as the principal. The baseline action benefits

the principal, so we restrict attention to actions (Fb, cb) such that∫ y

0

yFb(dy)− cb ≥ 0.

Given a baseline action (Fb, cb), we now show it is still possible for the principal to be

weakly worse off from any contract and auction.

Proposition 3. Fix a baseline action (Fb, cb). For every contract w, there exists a type

space T ∈ T ∗
w (Fb, cb) such that Π(T, σ | a) ≤ 0 for every can-keep auction a and equilibrium

σ ∈ Σ(T, a).

Proof. Define yb ≡
∫ y

0
yFb(dy) and wb ≡

∫ y

0
w(y)Fb(dy).

If wb − cb ≥ 0, then we can follow the steps in Lemma 1 and construct a type space

T ∈ T ∗
w (Fb, cb) such that agents take the baseline action and the principal is weakly worse

16



off in any auction and equilibrium thereof.

If wb − cb < 0, it does not pay agents to mimic the baseline action. Fix a small enough

y ∈ [0, y] so that y − w(y) ≤ yb − cb. Now consider a type space T such that agents produce

outcome y at a cost that equals their contract pay w(y). Namely,

ŷi(s) = y, ŵi(s) = w(y), and v̂i(s) = 0

for every agent i ∈ {1, . . . , n} and signal profile s ∈ Sn. In addition, ŷb(s) = yb, ĉb(s) = cb and

ŵb(s) = wb. T clearly satisfies conditions (1) through (7), so T ∈ T ∗
w (Fb, cb). Now consider

any can-keep auction a. For any equilibrium σ ∈ Σ(T, a), it follows that

Π(T, σ | a) =
∫
Sn

∫
Rn
+

n∑
i=1

[
qi(m)

(
ŷi(s)− ŵi(s)− (ŷb(s)− ĉb(s))

)
+ ti(m)

]
σ(dm|s)ψ(ds)

=

∫
Sn

∫
Rn
+

n∑
i=1

[
qi(m)

(
y − w(y)− (yb − cb)

)
+ ti(m)

]
σ(dm|s)ψ(ds)

≤
∫
Sn

∫
Rn
+

n∑
i=1

−
(
qi(m)v̂i(s)− ti(m)

)
σ(dm|s)ψ(ds)

≤ 0.

where the last inequality follows because agents may always send message 0 ∈ M and obtain

a non-negative payoff, so they cannot be worse off in equilibrium. ■

Thus, knowledge of the baseline action cannot rule out the possibility that the principal is

weakly worse off from any contract and auction. Together with Lemmas 2 and 3, this result

implies that a first-price auction of a full-benefit contract is optimal.

But there are many other optimal contracts and auctions here. Indeed, the principal can

achieve a payoff guarantee of zero if she sets a reserve price equal to her payoff under the

baseline action and shares output with the contracted agent any which way.

Proposition 4. Fix a baseline action (Fb, cb) and let yb =
∫ y

0
yFb(dy). Consider a contract

w such that w(y) ≤ y for all y ∈ [0, y] and an auction a with a reserve price of yb − cb. For

every type space T ∈ T ∗
w (Fb, cb) and equilibrium σ ∈ Σ(T, a), Π(T, σ | a) ≥ 0.

Proof. Fix a type space T ∈ T ∗
w (Fb, cb). T satisfies (1) and w(y) ≤ y for all y, so that

ŵi(s) ≤ ŷi(s) for all i and s ∈ Sn. Since auction a has a reserve price of yb − cb, the

principal’s revenue is at least yb − cb whenever auction a allocates the contract. For any
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profile of strategies σ, an implication is that∫
Sn

∫
Mn

n∑
i=1

(
ti(m)− qi(m)(yb − cb)

)
σ(dm|s)ψ(ds) ≥ 0.

In any equilibrium σ ∈ Σ(T, a), we conclude that

Π(T, σ |w, a) =
∫
Sn

∫
Mn

n∑
i=1

(
qi(m)

[
ŷi(s)− ŵi(s)− (yb − cb)

]
+ ti(m)

)
σ(dm|s)ψ(ds)

≥
∫
Sn

∫
Mn

n∑
i=1

qi(m)
[
ŷi(s)− ŵi(s)

]
σ(dm|s)ψ(ds)

≥ 0.

■

3.3 Other Known Actions

In section 2, the principal knows agents may take the baseline action but ignores what other

actions are available. We now allow the principal to know of other available actions.

As in Carroll (2015), the principal knows that agents may choose among a compact set

of actions A ⊆ ∆([0, y]) × [0,∞) and ignores what other actions are also available. A type

space T is consistent with a set of actions A under contract w if

v̂i(s) ≥ max
(F,c)∈A

∫ y

0

w(y)F (dy)− c for all i ∈ {1, . . . , n} and s ∈ Sn. (8)

Given contract w, the principal considers type spaces in T ∗
w (A), where

T ∗
w (A) = {T ∈ T ∗

w : T satisfies (8)}.

Note that we have not included the baseline action in set A: a type space T ∈ T ∗
w (A) need

not be consistent with any given baseline action (Fb, cb). Our principal therefore continues

to ignore its consequences.

Here, the principal continues to allow for the possibility that agents mimic the baseline

action — it might be better than any action in A. As a result (Lemma 1), the principal’s

payoff guarantee is still non-positive. Moreover, a first-price auction of a full-benefit contract

is optimal and other contracts are not, regardless of the auction pairing. But I don’t think it

makes much sense to think that the principal knows about other actions available to agents

yet ignores the baseline action. A more interesting extension would have the principal know
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the baseline action as well as other actions available to agents. This is the extension I am

struggling with.
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4 Discussion

We have presented a class of mechanisms — auctions of contracts — as an alternative for a

principal to hire an agent when she faces an opportunity cost of contracting and is unsure

about its magnitude. The principal’s opportunity cost is given by her payoff under the

baseline action, the action she would take if she did not hire anyone. When the baseline

action is also available to agents, we showed that the principal obtains the best possible

guarantee by selling a contract that pays all her benefit from the realized outcome with a

first-price auction.

Our results speak to existing work on robustness in contract design. We have shown that

contracts other than the full-benefit contract can make our principal worse off, regardless of

the auction pairing. This finding contrasts with the well-known positive payoff guarantees

of linear contracts (Chassang 2013, Carroll 2015), which depend on the assumption that the

principal’s baseline action produces no output. This assumption may make sense or not,

depending on the application of interest. Our marginal contribution to this literature is to

show how the principal can still hire while avoiding negative payoffs when this assumption is

not warranted.

At a broader level, we contribute to the literature on the design of mechanisms that

perform well in a wide range of situations. The joint contract and auction design problem

forces us to simultaneously address designer uncertainty about the actions and the informa-

tion available to agents. Our approach defines type spaces to include both a common prior

information structure that specifies a hierarchy of agents’ beliefs about their values of the

contract, as well as a specification of the counterfactual outcomes that agents would produce

under contract and that the principal would produce if she did not hire anyone. The prin-

cipal considers a class of contract-specific type spaces and judges contract and auction pairs

according to her payoff in the worst possible type space. This approach provides the interface

we need to draw insights from the fertile literatures on informationally robust auction design

(Bergemann, Brooks, and Morris 2017, Bergemann, Brooks, and Morris 2019, Bergemann,

Brooks, and Morris 2020, Brooks and Du 2021) and robust contract design (Carroll 2015).

That said, the optimal payoff guarantee for our principal is zero. So, why bother auc-

tioning off a contract? Our motivation for this paper is not to guide a principal who literally

values a contract and an auction according to their worst possible performance — she would

certainly be indifferent between selling a contract and taking the baseline action, at best.

Rather, we have aimed to find contracts and auctions that effectively outsource production

under few assumptions. This is valuable for a principal who somehow needs the approval

of others: the assumptions we lay out are a consensus that people must reach to cast the

principal’s decisions in a favorable light.
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